Amazon Forecast Service

2021/11/18 - Amazon Forecast Service - 10 new 5 updated api methods

Changes  NEW CreateExplanability API that helps you understand how attributes such as price, promotion, etc. contributes to your forecasted values; NEW CreateAutoPredictor API that trains up to 40% more accurate forecasting model, saves up to 50% of retraining time, and provides model level explainability.

DeleteExplainabilityExport (new) Link ¶

Deletes an Explainability export job.

See also: AWS API Documentation

Request Syntax

client.delete_explainability_export(
    ExplainabilityExportArn='string'
)
type ExplainabilityExportArn

string

param ExplainabilityExportArn

[REQUIRED]

The Amazon Resource Name (ARN) of the Explainability export to delete.

returns

None

CreateAutoPredictor (new) Link ¶

Creates an Amazon Forecast predictor.

Amazon Forecast creates predictors with AutoPredictor, which involves applying the optimal combination of algorithms to each time series in your datasets. You can use CreateAutoPredictor to create new predictors or upgrade/retrain existing predictors.

Creating new predictors

The following parameters are required when creating a new predictor:

  • PredictorName - A unique name for the predictor.

  • DatasetGroupArn - The ARN of the dataset group used to train the predictor.

  • ForecastFrequency - The granularity of your forecasts (hourly, daily, weekly, etc).

  • ForecastHorizon - The number of time steps being forecasted.

When creating a new predictor, do not specify a value for ReferencePredictorArn .

Upgrading and retraining predictors

The following parameters are required when retraining or upgrading a predictor:

  • PredictorName - A unique name for the predictor.

  • ReferencePredictorArn - The ARN of the predictor to retrain or upgrade.

When upgrading or retraining a predictor, only specify values for the ReferencePredictorArn and PredictorName .

See also: AWS API Documentation

Request Syntax

client.create_auto_predictor(
    PredictorName='string',
    ForecastHorizon=123,
    ForecastTypes=[
        'string',
    ],
    ForecastDimensions=[
        'string',
    ],
    ForecastFrequency='string',
    DataConfig={
        'DatasetGroupArn': 'string',
        'AttributeConfigs': [
            {
                'AttributeName': 'string',
                'Transformations': {
                    'string': 'string'
                }
            },
        ],
        'AdditionalDatasets': [
            {
                'Name': 'string',
                'Configuration': {
                    'string': [
                        'string',
                    ]
                }
            },
        ]
    },
    EncryptionConfig={
        'RoleArn': 'string',
        'KMSKeyArn': 'string'
    },
    ReferencePredictorArn='string',
    OptimizationMetric='WAPE'|'RMSE'|'AverageWeightedQuantileLoss'|'MASE'|'MAPE',
    ExplainPredictor=True|False,
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type PredictorName

string

param PredictorName

[REQUIRED]

A unique name for the predictor

type ForecastHorizon

integer

param ForecastHorizon

The number of time-steps that the model predicts. The forecast horizon is also called the prediction length.

type ForecastTypes

list

param ForecastTypes

The forecast types used to train a predictor. You can specify up to five forecast types. Forecast types can be quantiles from 0.01 to 0.99, by increments of 0.01 or higher. You can also specify the mean forecast with mean .

  • (string) --

type ForecastDimensions

list

param ForecastDimensions

An array of dimension (field) names that specify how to group the generated forecast.

For example, if you are generating forecasts for item sales across all your stores, and your dataset contains a store_id field, you would specify store_id as a dimension to group sales forecasts for each store.

  • (string) --

type ForecastFrequency

string

param ForecastFrequency

The frequency of predictions in a forecast.

Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates every year and "5min" indicates every five minutes.

The frequency must be greater than or equal to the TARGET_TIME_SERIES dataset frequency.

When a RELATED_TIME_SERIES dataset is provided, the frequency must be equal to the RELATED_TIME_SERIES dataset frequency.

type DataConfig

dict

param DataConfig

The data configuration for your dataset group and any additional datasets.

  • DatasetGroupArn (string) -- [REQUIRED]

    The ARN of the dataset group used to train the predictor.

  • AttributeConfigs (list) --

    Aggregation and filling options for attributes in your dataset group.

    • (dict) --

      Provides information about the method used to transform attributes.

      The following is an example using the RETAIL domain:

      {

      "AttributeName": "demand",

      "Transformations": {"aggregation": "sum", "middlefill": "zero", "backfill": "zero"}

      }

      • AttributeName (string) -- [REQUIRED]

        The name of the attribute as specified in the schema. Amazon Forecast supports the target field of the target time series and the related time series datasets. For example, for the RETAIL domain, the target is demand .

      • Transformations (dict) -- [REQUIRED]

        The method parameters (key-value pairs), which are a map of override parameters. Specify these parameters to override the default values. Related Time Series attributes do not accept aggregation parameters.

        The following list shows the parameters and their valid values for the "filling" featurization method for a Target Time Series dataset. Default values are bolded.

        • aggregation : sum , avg , first , min , max

        • frontfill : none

        • middlefill : zero , nan (not a number), value , median , mean , min , max

        • backfill : zero , nan , value , median , mean , min , max

        The following list shows the parameters and their valid values for a Related Time Series featurization method (there are no defaults):

        • middlefill : zero , value , median , mean , min , max

        • backfill : zero , value , median , mean , min , max

        • futurefill : zero , value , median , mean , min , max

        To set a filling method to a specific value, set the fill parameter to value and define the value in a corresponding _value parameter. For example, to set backfilling to a value of 2, include the following: "backfill": "value" and "backfill_value":"2" .

        • (string) --

          • (string) --

  • AdditionalDatasets (list) --

    Additional built-in datasets like Holidays and the Weather Index.

    • (dict) --

      Describes an additional dataset. This object is part of the DataConfig object. Forecast supports the Weather Index and Holidays additional datasets.

      Weather Index

      The Amazon Forecast Weather Index is a built-in dataset that incorporates historical and projected weather information into your model. The Weather Index supplements your datasets with over two years of historical weather data and up to 14 days of projected weather data. For more information, see Amazon Forecast Weather Index .

      Holidays

      Holidays is a built-in dataset that incorporates national holiday information into your model. It provides native support for the holiday calendars of 66 countries. To view the holiday calendars, refer to the Jollyday library. For more information, see Holidays Featurization .

      • Name (string) -- [REQUIRED]

        The name of the additional dataset. Valid names: "holiday" and "weather" .

      • Configuration (dict) --

        Weather Index

        To enable the Weather Index, do not specify a value for Configuration .

        Holidays

        To enable Holidays, specify a country with one of the following two-letter country codes:

        • "AL" - ALBANIA

        • "AR" - ARGENTINA

        • "AT" - AUSTRIA

        • "AU" - AUSTRALIA

        • "BA" - BOSNIA HERZEGOVINA

        • "BE" - BELGIUM

        • "BG" - BULGARIA

        • "BO" - BOLIVIA

        • "BR" - BRAZIL

        • "BY" - BELARUS

        • "CA" - CANADA

        • "CL" - CHILE

        • "CO" - COLOMBIA

        • "CR" - COSTA RICA

        • "HR" - CROATIA

        • "CZ" - CZECH REPUBLIC

        • "DK" - DENMARK

        • "EC" - ECUADOR

        • "EE" - ESTONIA

        • "ET" - ETHIOPIA

        • "FI" - FINLAND

        • "FR" - FRANCE

        • "DE" - GERMANY

        • "GR" - GREECE

        • "HU" - HUNGARY

        • "IS" - ICELAND

        • "IN" - INDIA

        • "IE" - IRELAND

        • "IT" - ITALY

        • "JP" - JAPAN

        • "KZ" - KAZAKHSTAN

        • "KR" - KOREA

        • "LV" - LATVIA

        • "LI" - LIECHTENSTEIN

        • "LT" - LITHUANIA

        • "LU" - LUXEMBOURG

        • "MK" - MACEDONIA

        • "MT" - MALTA

        • "MX" - MEXICO

        • "MD" - MOLDOVA

        • "ME" - MONTENEGRO

        • "NL" - NETHERLANDS

        • "NZ" - NEW ZEALAND

        • "NI" - NICARAGUA

        • "NG" - NIGERIA

        • "NO" - NORWAY

        • "PA" - PANAMA

        • "PY" - PARAGUAY

        • "PE" - PERU

        • "PL" - POLAND

        • "PT" - PORTUGAL

        • "RO" - ROMANIA

        • "RU" - RUSSIA

        • "RS" - SERBIA

        • "SK" - SLOVAKIA

        • "SI" - SLOVENIA

        • "ZA" - SOUTH AFRICA

        • "ES" - SPAIN

        • "SE" - SWEDEN

        • "CH" - SWITZERLAND

        • "UA" - UKRAINE

        • "AE" - UNITED ARAB EMIRATES

        • "US" - UNITED STATES

        • "UK" - UNITED KINGDOM

        • "UY" - URUGUAY

        • "VE" - VENEZUELA

        • (string) --

          • (list) --

            • (string) --

type EncryptionConfig

dict

param EncryptionConfig

An AWS Key Management Service (KMS) key and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key. You can specify this optional object in the CreateDataset and CreatePredictor requests.

  • RoleArn (string) -- [REQUIRED]

    The ARN of the IAM role that Amazon Forecast can assume to access the AWS KMS key.

    Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

  • KMSKeyArn (string) -- [REQUIRED]

    The Amazon Resource Name (ARN) of the KMS key.

type ReferencePredictorArn

string

param ReferencePredictorArn

The ARN of the predictor to retrain or upgrade. This parameter is only used when retraining or upgrading a predictor. When creating a new predictor, do not specify a value for this parameter.

When upgrading or retraining a predictor, only specify values for the ReferencePredictorArn and PredictorName . The value for PredictorName must be a unique predictor name.

type OptimizationMetric

string

param OptimizationMetric

The accuracy metric used to optimize the predictor.

type ExplainPredictor

boolean

param ExplainPredictor

type Tags

list

param Tags

Optional metadata to help you categorize and organize your predictors. Each tag consists of a key and an optional value, both of which you define. Tag keys and values are case sensitive.

The following restrictions apply to tags:

  • For each resource, each tag key must be unique and each tag key must have one value.

  • Maximum number of tags per resource: 50.

  • Maximum key length: 128 Unicode characters in UTF-8.

  • Maximum value length: 256 Unicode characters in UTF-8.

  • Accepted characters: all letters and numbers, spaces representable in UTF-8, and + - = . _ : / @. If your tagging schema is used across other services and resources, the character restrictions of those services also apply.

  • Key prefixes cannot include any upper or lowercase combination of aws: or AWS: . Values can have this prefix. If a tag value has aws as its prefix but the key does not, Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit. You cannot edit or delete tag keys with this prefix.

  • (dict) --

    The optional metadata that you apply to a resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

    The following basic restrictions apply to tags:

    • Maximum number of tags per resource - 50.

    • For each resource, each tag key must be unique, and each tag key can have only one value.

    • Maximum key length - 128 Unicode characters in UTF-8.

    • Maximum value length - 256 Unicode characters in UTF-8.

    • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

    • Tag keys and values are case sensitive.

    • Do not use aws: , AWS: , or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

    • Key (string) -- [REQUIRED]

      One part of a key-value pair that makes up a tag. A key is a general label that acts like a category for more specific tag values.

    • Value (string) -- [REQUIRED]

      The optional part of a key-value pair that makes up a tag. A value acts as a descriptor within a tag category (key).

rtype

dict

returns

Response Syntax

{
    'PredictorArn': 'string'
}

Response Structure

  • (dict) --

    • PredictorArn (string) --

      The Amazon Resource Name (ARN) of the predictor.

DescribeExplainability (new) Link ¶

Describes an Explainability resource created using the CreateExplainability operation.

See also: AWS API Documentation

Request Syntax

client.describe_explainability(
    ExplainabilityArn='string'
)
type ExplainabilityArn

string

param ExplainabilityArn

[REQUIRED]

The Amazon Resource Name (ARN) of the Explaianability to describe.

rtype

dict

returns

Response Syntax

{
    'ExplainabilityArn': 'string',
    'ExplainabilityName': 'string',
    'ResourceArn': 'string',
    'ExplainabilityConfig': {
        'TimeSeriesGranularity': 'ALL'|'SPECIFIC',
        'TimePointGranularity': 'ALL'|'SPECIFIC'
    },
    'EnableVisualization': True|False,
    'DataSource': {
        'S3Config': {
            'Path': 'string',
            'RoleArn': 'string',
            'KMSKeyArn': 'string'
        }
    },
    'Schema': {
        'Attributes': [
            {
                'AttributeName': 'string',
                'AttributeType': 'string'|'integer'|'float'|'timestamp'|'geolocation'
            },
        ]
    },
    'StartDateTime': 'string',
    'EndDateTime': 'string',
    'EstimatedTimeRemainingInMinutes': 123,
    'Message': 'string',
    'Status': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModificationTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --

    • ExplainabilityArn (string) --

      The Amazon Resource Name (ARN) of the Explainability.

    • ExplainabilityName (string) --

      The name of the Explainability.

    • ResourceArn (string) --

      The Amazon Resource Name (ARN) of the Predictor or Forecast used to create the Explainability resource.

    • ExplainabilityConfig (dict) --

      The configuration settings that define the granularity of time series and time points for the Explainability.

      • TimeSeriesGranularity (string) --

        To create an Explainability for all time series in your datasets, use ALL . To create an Explainability for specific time series in your datasets, use SPECIFIC .

        Specify time series by uploading a CSV file to an Amazon S3 bucket and set the location within the DataDestination data type.

      • TimePointGranularity (string) --

        To create an Explainability for all time points in your forecast horizon, use ALL . To create an Explainability for specific time points in your forecast horizon, use SPECIFIC .

        Specify time points with the StartDateTime and EndDateTime parameters within the CreateExplainability operation.

    • EnableVisualization (boolean) --

      Whether the visualization was enabled for the Explainability resource.

    • DataSource (dict) --

      The source of your training data, an AWS Identity and Access Management (IAM) role that allows Amazon Forecast to access the data and, optionally, an AWS Key Management Service (KMS) key. This object is submitted in the CreateDatasetImportJob request.

      • S3Config (dict) --

        The path to the training data stored in an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the data.

        • Path (string) --

          The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

        • RoleArn (string) --

          The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

          Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

        • KMSKeyArn (string) --

          The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

    • Schema (dict) --

      Defines the fields of a dataset. You specify this object in the CreateDataset request.

      • Attributes (list) --

        An array of attributes specifying the name and type of each field in a dataset.

        • (dict) --

          An attribute of a schema, which defines a dataset field. A schema attribute is required for every field in a dataset. The Schema object contains an array of SchemaAttribute objects.

          • AttributeName (string) --

            The name of the dataset field.

          • AttributeType (string) --

            The data type of the field.

    • StartDateTime (string) --

      If TimePointGranularity is set to SPECIFIC , the first time point in the Explainability.

    • EndDateTime (string) --

      If TimePointGranularity is set to SPECIFIC , the last time point in the Explainability.

    • EstimatedTimeRemainingInMinutes (integer) --

      The estimated time remaining in minutes for the CreateExplainability job to complete.

    • Message (string) --

      If an error occurred, a message about the error.

    • Status (string) --

      The status of the Explainability resource. States include:

      • ACTIVE

      • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED

      • CREATE_STOPPING , CREATE_STOPPED

      • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED

    • CreationTime (datetime) --

      When the Explainability resource was created.

    • LastModificationTime (datetime) --

      The last time the resource was modified. The timestamp depends on the status of the job:

      • CREATE_PENDING - The CreationTime .

      • CREATE_IN_PROGRESS - The current timestamp.

      • CREATE_STOPPING - The current timestamp.

      • CREATE_STOPPED - When the job stopped.

      • ACTIVE or CREATE_FAILED - When the job finished or failed.

DeleteExplainability (new) Link ¶

Deletes an Explainability resource.

You can delete only predictor that have a status of ACTIVE or CREATE_FAILED . To get the status, use the DescribeExplainability operation.

See also: AWS API Documentation

Request Syntax

client.delete_explainability(
    ExplainabilityArn='string'
)
type ExplainabilityArn

string

param ExplainabilityArn

[REQUIRED]

The Amazon Resource Name (ARN) of the Explainability resource to delete.

returns

None

ListExplainabilities (new) Link ¶

Returns a list of Explainability resources created using the CreateExplainability operation. This operation returns a summary for each Explainability. You can filter the list using an array of Filter objects.

To retrieve the complete set of properties for a particular Explainability resource, use the ARN with the DescribeExplainability operation.

See also: AWS API Documentation

Request Syntax

client.list_explainabilities(
    NextToken='string',
    MaxResults=123,
    Filters=[
        {
            'Key': 'string',
            'Value': 'string',
            'Condition': 'IS'|'IS_NOT'
        },
    ]
)
type NextToken

string

param NextToken

If the result of the previous request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.

type MaxResults

integer

param MaxResults

The number of items returned in the response.

type Filters

list

param Filters

An array of filters. For each filter, provide a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the resources that match the statement from the list. The match statement consists of a key and a value.

Filter properties

  • Condition - The condition to apply. Valid values are IS and IS_NOT .

  • Key - The name of the parameter to filter on. Valid values are PredictorArn and Status .

  • Value - The value to match.

  • (dict) --

    Describes a filter for choosing a subset of objects. Each filter consists of a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the objects that match the statement, respectively. The match statement consists of a key and a value.

    • Key (string) -- [REQUIRED]

      The name of the parameter to filter on.

    • Value (string) -- [REQUIRED]

      The value to match.

    • Condition (string) -- [REQUIRED]

      The condition to apply. To include the objects that match the statement, specify IS . To exclude matching objects, specify IS_NOT .

rtype

dict

returns

Response Syntax

{
    'Explainabilities': [
        {
            'ExplainabilityArn': 'string',
            'ExplainabilityName': 'string',
            'ResourceArn': 'string',
            'ExplainabilityConfig': {
                'TimeSeriesGranularity': 'ALL'|'SPECIFIC',
                'TimePointGranularity': 'ALL'|'SPECIFIC'
            },
            'Status': 'string',
            'Message': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Explainabilities (list) --

      An array of objects that summarize the properties of each Explainability resource.

      • (dict) --

        Provides a summary of the Explainability properties used in the ListExplainabilities operation. To get a complete set of properties, call the DescribeExplainability operation, and provide the listed ExplainabilityArn .

        • ExplainabilityArn (string) --

          The Amazon Resource Name (ARN) of the Explainability.

        • ExplainabilityName (string) --

          The name of the Explainability.

        • ResourceArn (string) --

          The Amazon Resource Name (ARN) of the Predictor or Forecast used to create the Explainability.

        • ExplainabilityConfig (dict) --

          The configuration settings that define the granularity of time series and time points for the Explainability.

          • TimeSeriesGranularity (string) --

            To create an Explainability for all time series in your datasets, use ALL . To create an Explainability for specific time series in your datasets, use SPECIFIC .

            Specify time series by uploading a CSV file to an Amazon S3 bucket and set the location within the DataDestination data type.

          • TimePointGranularity (string) --

            To create an Explainability for all time points in your forecast horizon, use ALL . To create an Explainability for specific time points in your forecast horizon, use SPECIFIC .

            Specify time points with the StartDateTime and EndDateTime parameters within the CreateExplainability operation.

        • Status (string) --

          The status of the Explainability. States include:

          • ACTIVE

          • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED

          • CREATE_STOPPING , CREATE_STOPPED

          • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED

        • Message (string) --

          Information about any errors that may have occurred during the Explainability creation process.

        • CreationTime (datetime) --

          When the Explainability was created.

        • LastModificationTime (datetime) --

          The last time the resource was modified. The timestamp depends on the status of the job:

          • CREATE_PENDING - The CreationTime .

          • CREATE_IN_PROGRESS - The current timestamp.

          • CREATE_STOPPING - The current timestamp.

          • CREATE_STOPPED - When the job stopped.

          • ACTIVE or CREATE_FAILED - When the job finished or failed.

    • NextToken (string) --

      Returns this token if the response is truncated. To retrieve the next set of results, use the token in the next request.

DescribeExplainabilityExport (new) Link ¶

Describes an Explainability export created using the CreateExplainabilityExport operation.

See also: AWS API Documentation

Request Syntax

client.describe_explainability_export(
    ExplainabilityExportArn='string'
)
type ExplainabilityExportArn

string

param ExplainabilityExportArn

[REQUIRED]

The Amazon Resource Name (ARN) of the Explainability export.

rtype

dict

returns

Response Syntax

{
    'ExplainabilityExportArn': 'string',
    'ExplainabilityExportName': 'string',
    'ExplainabilityArn': 'string',
    'Destination': {
        'S3Config': {
            'Path': 'string',
            'RoleArn': 'string',
            'KMSKeyArn': 'string'
        }
    },
    'Message': 'string',
    'Status': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModificationTime': datetime(2015, 1, 1)
}

Response Structure

  • (dict) --

    • ExplainabilityExportArn (string) --

      The Amazon Resource Name (ARN) of the Explainability export.

    • ExplainabilityExportName (string) --

      The name of the Explainability export.

    • ExplainabilityArn (string) --

      The Amazon Resource Name (ARN) of the Explainability.

    • Destination (dict) --

      The destination for an export job. Provide an S3 path, an AWS Identity and Access Management (IAM) role that allows Amazon Forecast to access the location, and an AWS Key Management Service (KMS) key (optional).

      • S3Config (dict) --

        The path to an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the bucket.

        • Path (string) --

          The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

        • RoleArn (string) --

          The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

          Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

        • KMSKeyArn (string) --

          The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

    • Message (string) --

      Information about any errors that occurred during the export.

    • Status (string) --

      The status of the Explainability export. States include:

      • ACTIVE

      • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED

      • CREATE_STOPPING , CREATE_STOPPED

      • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED

    • CreationTime (datetime) --

      When the Explainability export was created.

    • LastModificationTime (datetime) --

      The last time the resource was modified. The timestamp depends on the status of the job:

      • CREATE_PENDING - The CreationTime .

      • CREATE_IN_PROGRESS - The current timestamp.

      • CREATE_STOPPING - The current timestamp.

      • CREATE_STOPPED - When the job stopped.

      • ACTIVE or CREATE_FAILED - When the job finished or failed.

DescribeAutoPredictor (new) Link ¶

Describes a predictor created using the CreateAutoPredictor operation.

See also: AWS API Documentation

Request Syntax

client.describe_auto_predictor(
    PredictorArn='string'
)
type PredictorArn

string

param PredictorArn

[REQUIRED]

The Amazon Resource Name (ARN) of the predictor.

rtype

dict

returns

Response Syntax

{
    'PredictorArn': 'string',
    'PredictorName': 'string',
    'ForecastHorizon': 123,
    'ForecastTypes': [
        'string',
    ],
    'ForecastFrequency': 'string',
    'DatasetImportJobArns': [
        'string',
    ],
    'DataConfig': {
        'DatasetGroupArn': 'string',
        'AttributeConfigs': [
            {
                'AttributeName': 'string',
                'Transformations': {
                    'string': 'string'
                }
            },
        ],
        'AdditionalDatasets': [
            {
                'Name': 'string',
                'Configuration': {
                    'string': [
                        'string',
                    ]
                }
            },
        ]
    },
    'EncryptionConfig': {
        'RoleArn': 'string',
        'KMSKeyArn': 'string'
    },
    'ReferencePredictorSummary': {
        'Arn': 'string',
        'State': 'Active'|'Deleted'
    },
    'EstimatedTimeRemainingInMinutes': 123,
    'Status': 'string',
    'Message': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModificationTime': datetime(2015, 1, 1),
    'OptimizationMetric': 'WAPE'|'RMSE'|'AverageWeightedQuantileLoss'|'MASE'|'MAPE',
    'ExplainabilityInfo': {
        'ExplainabilityArn': 'string',
        'Status': 'string'
    }
}

Response Structure

  • (dict) --

    • PredictorArn (string) --

      The Amazon Resource Name (ARN) of the predictor

    • PredictorName (string) --

      The name of the predictor.

    • ForecastHorizon (integer) --

      The number of time-steps that the model predicts. The forecast horizon is also called the prediction length.

    • ForecastTypes (list) --

      The forecast types used during predictor training. Default value is ["0.1","0.5","0.9"].

      • (string) --

    • ForecastFrequency (string) --

      The frequency of predictions in a forecast.

      Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates every year and "5min" indicates every five minutes.

    • DatasetImportJobArns (list) --

      An array of the ARNs of the dataset import jobs used to import training data for the predictor.

      • (string) --

    • DataConfig (dict) --

      The data configuration for your dataset group and any additional datasets.

      • DatasetGroupArn (string) --

        The ARN of the dataset group used to train the predictor.

      • AttributeConfigs (list) --

        Aggregation and filling options for attributes in your dataset group.

        • (dict) --

          Provides information about the method used to transform attributes.

          The following is an example using the RETAIL domain:

          {

          "AttributeName": "demand",

          "Transformations": {"aggregation": "sum", "middlefill": "zero", "backfill": "zero"}

          }

          • AttributeName (string) --

            The name of the attribute as specified in the schema. Amazon Forecast supports the target field of the target time series and the related time series datasets. For example, for the RETAIL domain, the target is demand .

          • Transformations (dict) --

            The method parameters (key-value pairs), which are a map of override parameters. Specify these parameters to override the default values. Related Time Series attributes do not accept aggregation parameters.

            The following list shows the parameters and their valid values for the "filling" featurization method for a Target Time Series dataset. Default values are bolded.

            • aggregation : sum , avg , first , min , max

            • frontfill : none

            • middlefill : zero , nan (not a number), value , median , mean , min , max

            • backfill : zero , nan , value , median , mean , min , max

            The following list shows the parameters and their valid values for a Related Time Series featurization method (there are no defaults):

            • middlefill : zero , value , median , mean , min , max

            • backfill : zero , value , median , mean , min , max

            • futurefill : zero , value , median , mean , min , max

            To set a filling method to a specific value, set the fill parameter to value and define the value in a corresponding _value parameter. For example, to set backfilling to a value of 2, include the following: "backfill": "value" and "backfill_value":"2" .

            • (string) --

              • (string) --

      • AdditionalDatasets (list) --

        Additional built-in datasets like Holidays and the Weather Index.

        • (dict) --

          Describes an additional dataset. This object is part of the DataConfig object. Forecast supports the Weather Index and Holidays additional datasets.

          Weather Index

          The Amazon Forecast Weather Index is a built-in dataset that incorporates historical and projected weather information into your model. The Weather Index supplements your datasets with over two years of historical weather data and up to 14 days of projected weather data. For more information, see Amazon Forecast Weather Index .

          Holidays

          Holidays is a built-in dataset that incorporates national holiday information into your model. It provides native support for the holiday calendars of 66 countries. To view the holiday calendars, refer to the Jollyday library. For more information, see Holidays Featurization .

          • Name (string) --

            The name of the additional dataset. Valid names: "holiday" and "weather" .

          • Configuration (dict) --

            Weather Index

            To enable the Weather Index, do not specify a value for Configuration .

            Holidays

            To enable Holidays, specify a country with one of the following two-letter country codes:

            • "AL" - ALBANIA

            • "AR" - ARGENTINA

            • "AT" - AUSTRIA

            • "AU" - AUSTRALIA

            • "BA" - BOSNIA HERZEGOVINA

            • "BE" - BELGIUM

            • "BG" - BULGARIA

            • "BO" - BOLIVIA

            • "BR" - BRAZIL

            • "BY" - BELARUS

            • "CA" - CANADA

            • "CL" - CHILE

            • "CO" - COLOMBIA

            • "CR" - COSTA RICA

            • "HR" - CROATIA

            • "CZ" - CZECH REPUBLIC

            • "DK" - DENMARK

            • "EC" - ECUADOR

            • "EE" - ESTONIA

            • "ET" - ETHIOPIA

            • "FI" - FINLAND

            • "FR" - FRANCE

            • "DE" - GERMANY

            • "GR" - GREECE

            • "HU" - HUNGARY

            • "IS" - ICELAND

            • "IN" - INDIA

            • "IE" - IRELAND

            • "IT" - ITALY

            • "JP" - JAPAN

            • "KZ" - KAZAKHSTAN

            • "KR" - KOREA

            • "LV" - LATVIA

            • "LI" - LIECHTENSTEIN

            • "LT" - LITHUANIA

            • "LU" - LUXEMBOURG

            • "MK" - MACEDONIA

            • "MT" - MALTA

            • "MX" - MEXICO

            • "MD" - MOLDOVA

            • "ME" - MONTENEGRO

            • "NL" - NETHERLANDS

            • "NZ" - NEW ZEALAND

            • "NI" - NICARAGUA

            • "NG" - NIGERIA

            • "NO" - NORWAY

            • "PA" - PANAMA

            • "PY" - PARAGUAY

            • "PE" - PERU

            • "PL" - POLAND

            • "PT" - PORTUGAL

            • "RO" - ROMANIA

            • "RU" - RUSSIA

            • "RS" - SERBIA

            • "SK" - SLOVAKIA

            • "SI" - SLOVENIA

            • "ZA" - SOUTH AFRICA

            • "ES" - SPAIN

            • "SE" - SWEDEN

            • "CH" - SWITZERLAND

            • "UA" - UKRAINE

            • "AE" - UNITED ARAB EMIRATES

            • "US" - UNITED STATES

            • "UK" - UNITED KINGDOM

            • "UY" - URUGUAY

            • "VE" - VENEZUELA

            • (string) --

              • (list) --

                • (string) --

    • EncryptionConfig (dict) --

      An AWS Key Management Service (KMS) key and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key. You can specify this optional object in the CreateDataset and CreatePredictor requests.

      • RoleArn (string) --

        The ARN of the IAM role that Amazon Forecast can assume to access the AWS KMS key.

        Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

      • KMSKeyArn (string) --

        The Amazon Resource Name (ARN) of the KMS key.

    • ReferencePredictorSummary (dict) --

      The ARN and state of the reference predictor. This parameter is only valid for retrained or upgraded predictors.

      • Arn (string) --

        The ARN of the reference predictor.

      • State (string) --

        Whether the reference predictor is Active or Deleted .

    • EstimatedTimeRemainingInMinutes (integer) --

      The estimated time remaining in minutes for the predictor training job to complete.

    • Status (string) --

      The status of the predictor. States include:

      • ACTIVE

      • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED

      • CREATE_STOPPING , CREATE_STOPPED

      • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED

    • Message (string) --

      In the event of an error, a message detailing the cause of the error.

    • CreationTime (datetime) --

      The timestamp of the CreateAutoPredictor request.

    • LastModificationTime (datetime) --

      The last time the resource was modified. The timestamp depends on the status of the job:

      • CREATE_PENDING - The CreationTime .

      • CREATE_IN_PROGRESS - The current timestamp.

      • CREATE_STOPPING - The current timestamp.

      • CREATE_STOPPED - When the job stopped.

      • ACTIVE or CREATE_FAILED - When the job finished or failed.

    • OptimizationMetric (string) --

      The accuracy metric used to optimize the predictor.

    • ExplainabilityInfo (dict) --

      • ExplainabilityArn (string) --

      • Status (string) --

CreateExplainabilityExport (new) Link ¶

Exports an Explainability resource created by the CreateExplainability operation. Exported files are exported to an Amazon Simple Storage Service (Amazon S3) bucket.

You must specify a DataDestination object that includes an Amazon S3 bucket and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket. For more information, see aws-forecast-iam-roles .

Note

The Status of the export job must be ACTIVE before you can access the export in your Amazon S3 bucket. To get the status, use the DescribeExplainabilityExport operation.

See also: AWS API Documentation

Request Syntax

client.create_explainability_export(
    ExplainabilityExportName='string',
    ExplainabilityArn='string',
    Destination={
        'S3Config': {
            'Path': 'string',
            'RoleArn': 'string',
            'KMSKeyArn': 'string'
        }
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type ExplainabilityExportName

string

param ExplainabilityExportName

[REQUIRED]

A unique name for the Explainability export.

type ExplainabilityArn

string

param ExplainabilityArn

[REQUIRED]

The Amazon Resource Name (ARN) of the Explainability to export.

type Destination

dict

param Destination

[REQUIRED]

The destination for an export job. Provide an S3 path, an AWS Identity and Access Management (IAM) role that allows Amazon Forecast to access the location, and an AWS Key Management Service (KMS) key (optional).

  • S3Config (dict) -- [REQUIRED]

    The path to an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the bucket.

    • Path (string) -- [REQUIRED]

      The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

    • RoleArn (string) -- [REQUIRED]

      The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

      Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

    • KMSKeyArn (string) --

      The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

type Tags

list

param Tags

Optional metadata to help you categorize and organize your resources. Each tag consists of a key and an optional value, both of which you define. Tag keys and values are case sensitive.

The following restrictions apply to tags:

  • For each resource, each tag key must be unique and each tag key must have one value.

  • Maximum number of tags per resource: 50.

  • Maximum key length: 128 Unicode characters in UTF-8.

  • Maximum value length: 256 Unicode characters in UTF-8.

  • Accepted characters: all letters and numbers, spaces representable in UTF-8, and + - = . _ : / @. If your tagging schema is used across other services and resources, the character restrictions of those services also apply.

  • Key prefixes cannot include any upper or lowercase combination of aws: or AWS: . Values can have this prefix. If a tag value has aws as its prefix but the key does not, Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit. You cannot edit or delete tag keys with this prefix.

  • (dict) --

    The optional metadata that you apply to a resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

    The following basic restrictions apply to tags:

    • Maximum number of tags per resource - 50.

    • For each resource, each tag key must be unique, and each tag key can have only one value.

    • Maximum key length - 128 Unicode characters in UTF-8.

    • Maximum value length - 256 Unicode characters in UTF-8.

    • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

    • Tag keys and values are case sensitive.

    • Do not use aws: , AWS: , or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

    • Key (string) -- [REQUIRED]

      One part of a key-value pair that makes up a tag. A key is a general label that acts like a category for more specific tag values.

    • Value (string) -- [REQUIRED]

      The optional part of a key-value pair that makes up a tag. A value acts as a descriptor within a tag category (key).

rtype

dict

returns

Response Syntax

{
    'ExplainabilityExportArn': 'string'
}

Response Structure

  • (dict) --

    • ExplainabilityExportArn (string) --

      The Amazon Resource Name (ARN) of the export.

ListExplainabilityExports (new) Link ¶

Returns a list of Explainability exports created using the CreateExplainabilityExport operation. This operation returns a summary for each Explainability export. You can filter the list using an array of Filter objects.

To retrieve the complete set of properties for a particular Explainability export, use the ARN with the DescribeExplainability operation.

See also: AWS API Documentation

Request Syntax

client.list_explainability_exports(
    NextToken='string',
    MaxResults=123,
    Filters=[
        {
            'Key': 'string',
            'Value': 'string',
            'Condition': 'IS'|'IS_NOT'
        },
    ]
)
type NextToken

string

param NextToken

If the result of the previous request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.

type MaxResults

integer

param MaxResults

The number of items to return in the response.

type Filters

list

param Filters

An array of filters. For each filter, provide a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude resources that match the statement from the list. The match statement consists of a key and a value.

Filter properties

  • Condition - The condition to apply. Valid values are IS and IS_NOT .

  • Key - The name of the parameter to filter on. Valid values are PredictorArn and Status .

  • Value - The value to match.

  • (dict) --

    Describes a filter for choosing a subset of objects. Each filter consists of a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the objects that match the statement, respectively. The match statement consists of a key and a value.

    • Key (string) -- [REQUIRED]

      The name of the parameter to filter on.

    • Value (string) -- [REQUIRED]

      The value to match.

    • Condition (string) -- [REQUIRED]

      The condition to apply. To include the objects that match the statement, specify IS . To exclude matching objects, specify IS_NOT .

rtype

dict

returns

Response Syntax

{
    'ExplainabilityExports': [
        {
            'ExplainabilityExportArn': 'string',
            'ExplainabilityExportName': 'string',
            'Destination': {
                'S3Config': {
                    'Path': 'string',
                    'RoleArn': 'string',
                    'KMSKeyArn': 'string'
                }
            },
            'Status': 'string',
            'Message': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • ExplainabilityExports (list) --

      An array of objects that summarize the properties of each Explainability export.

      • (dict) --

        Provides a summary of the Explainability export properties used in the ListExplainabilityExports operation. To get a complete set of properties, call the DescribeExplainabilityExport operation, and provide the ExplainabilityExportArn .

        • ExplainabilityExportArn (string) --

          The Amazon Resource Name (ARN) of the Explainability export.

        • ExplainabilityExportName (string) --

          The name of the Explainability export

        • Destination (dict) --

          The destination for an export job. Provide an S3 path, an AWS Identity and Access Management (IAM) role that allows Amazon Forecast to access the location, and an AWS Key Management Service (KMS) key (optional).

          • S3Config (dict) --

            The path to an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the bucket.

            • Path (string) --

              The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

            • RoleArn (string) --

              The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

              Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

            • KMSKeyArn (string) --

              The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

        • Status (string) --

          The status of the Explainability export. States include:

          • ACTIVE

          • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED

          • CREATE_STOPPING , CREATE_STOPPED

          • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED

        • Message (string) --

          Information about any errors that may have occurred during the Explainability export.

        • CreationTime (datetime) --

          When the Explainability was created.

        • LastModificationTime (datetime) --

          The last time the resource was modified. The timestamp depends on the status of the job:

          • CREATE_PENDING - The CreationTime .

          • CREATE_IN_PROGRESS - The current timestamp.

          • CREATE_STOPPING - The current timestamp.

          • CREATE_STOPPED - When the job stopped.

          • ACTIVE or CREATE_FAILED - When the job finished or failed.

    • NextToken (string) --

      Returns this token if the response is truncated. To retrieve the next set of results, use the token in the next request.

CreateExplainability (new) Link ¶

Note

Explainability is only available for Forecasts and Predictors generated from an AutoPredictor ( CreateAutoPredictor )

Creates an Amazon Forecast Explainability.

Explainability helps you better understand how the attributes in your datasets impact forecast. Amazon Forecast uses a metric called Impact scores to quantify the relative impact of each attribute and determine whether they increase or decrease forecast values.

To enable Forecast Explainability, your predictor must include at least one of the following: related time series, item metadata, or additional datasets like Holidays and the Weather Index.

CreateExplainability accepts either a Predictor ARN or Forecast ARN. To receive aggregated Impact scores for all time series and time points in your datasets, provide a Predictor ARN. To receive Impact scores for specific time series and time points, provide a Forecast ARN.

CreateExplainability with a Predictor ARN

Note

You can only have one Explainability resource per predictor. If you already enabled ExplainPredictor in CreateAutoPredictor , that predictor already has an Explainability resource.

The following parameters are required when providing a Predictor ARN:

  • ExplainabilityName - A unique name for the Explainability.

  • ResourceArn - The Arn of the predictor.

  • TimePointGranularity - Must be set to “ALL”.

  • TimeSeriesGranularity - Must be set to “ALL”.

Do not specify a value for the following parameters:

  • DataSource - Only valid when TimeSeriesGranularity is “SPECIFIC”.

  • Schema - Only valid when TimeSeriesGranularity is “SPECIFIC”.

  • StartDateTime - Only valid when TimePointGranularity is “SPECIFIC”.

  • EndDateTime - Only valid when TimePointGranularity is “SPECIFIC”.

CreateExplainability with a Forecast ARN

Note

You can specify a maximum of 50 time series and 1500 time points.

The following parameters are required when providing a Predictor ARN:

  • ExplainabilityName - A unique name for the Explainability.

  • ResourceArn - The Arn of the forecast.

  • TimePointGranularity - Either “ALL” or “SPECIFIC”.

  • TimeSeriesGranularity - Either “ALL” or “SPECIFIC”.

If you set TimeSeriesGranularity to “SPECIFIC”, you must also provide the following:

  • DataSource - The S3 location of the CSV file specifying your time series.

  • Schema - The Schema defines the attributes and attribute types listed in the Data Source.

If you set TimePointGranularity to “SPECIFIC”, you must also provide the following:

  • StartDateTime - The first timestamp in the range of time points.

  • EndDateTime - The last timestamp in the range of time points.

See also: AWS API Documentation

Request Syntax

client.create_explainability(
    ExplainabilityName='string',
    ResourceArn='string',
    ExplainabilityConfig={
        'TimeSeriesGranularity': 'ALL'|'SPECIFIC',
        'TimePointGranularity': 'ALL'|'SPECIFIC'
    },
    DataSource={
        'S3Config': {
            'Path': 'string',
            'RoleArn': 'string',
            'KMSKeyArn': 'string'
        }
    },
    Schema={
        'Attributes': [
            {
                'AttributeName': 'string',
                'AttributeType': 'string'|'integer'|'float'|'timestamp'|'geolocation'
            },
        ]
    },
    EnableVisualization=True|False,
    StartDateTime='string',
    EndDateTime='string',
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ]
)
type ExplainabilityName

string

param ExplainabilityName

[REQUIRED]

A unique name for the Explainability.

type ResourceArn

string

param ResourceArn

[REQUIRED]

The Amazon Resource Name (ARN) of the Predictor or Forecast used to create the Explainability.

type ExplainabilityConfig

dict

param ExplainabilityConfig

[REQUIRED]

The configuration settings that define the granularity of time series and time points for the Explainability.

  • TimeSeriesGranularity (string) -- [REQUIRED]

    To create an Explainability for all time series in your datasets, use ALL . To create an Explainability for specific time series in your datasets, use SPECIFIC .

    Specify time series by uploading a CSV file to an Amazon S3 bucket and set the location within the DataDestination data type.

  • TimePointGranularity (string) -- [REQUIRED]

    To create an Explainability for all time points in your forecast horizon, use ALL . To create an Explainability for specific time points in your forecast horizon, use SPECIFIC .

    Specify time points with the StartDateTime and EndDateTime parameters within the CreateExplainability operation.

type DataSource

dict

param DataSource

The source of your training data, an AWS Identity and Access Management (IAM) role that allows Amazon Forecast to access the data and, optionally, an AWS Key Management Service (KMS) key. This object is submitted in the CreateDatasetImportJob request.

  • S3Config (dict) -- [REQUIRED]

    The path to the training data stored in an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the data.

    • Path (string) -- [REQUIRED]

      The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

    • RoleArn (string) -- [REQUIRED]

      The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

      Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

    • KMSKeyArn (string) --

      The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

type Schema

dict

param Schema

Defines the fields of a dataset. You specify this object in the CreateDataset request.

  • Attributes (list) --

    An array of attributes specifying the name and type of each field in a dataset.

    • (dict) --

      An attribute of a schema, which defines a dataset field. A schema attribute is required for every field in a dataset. The Schema object contains an array of SchemaAttribute objects.

      • AttributeName (string) --

        The name of the dataset field.

      • AttributeType (string) --

        The data type of the field.

type EnableVisualization

boolean

param EnableVisualization

Create an Expainability visualization that is viewable within the AWS console.

type StartDateTime

string

param StartDateTime

If TimePointGranularity is set to SPECIFIC , define the first point for the Explainability.

type EndDateTime

string

param EndDateTime

If TimePointGranularity is set to SPECIFIC , define the last time point for the Explainability.

type Tags

list

param Tags

Optional metadata to help you categorize and organize your resources. Each tag consists of a key and an optional value, both of which you define. Tag keys and values are case sensitive.

The following restrictions apply to tags:

  • For each resource, each tag key must be unique and each tag key must have one value.

  • Maximum number of tags per resource: 50.

  • Maximum key length: 128 Unicode characters in UTF-8.

  • Maximum value length: 256 Unicode characters in UTF-8.

  • Accepted characters: all letters and numbers, spaces representable in UTF-8, and + - = . _ : / @. If your tagging schema is used across other services and resources, the character restrictions of those services also apply.

  • Key prefixes cannot include any upper or lowercase combination of aws: or AWS: . Values can have this prefix. If a tag value has aws as its prefix but the key does not, Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit. You cannot edit or delete tag keys with this prefix.

  • (dict) --

    The optional metadata that you apply to a resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

    The following basic restrictions apply to tags:

    • Maximum number of tags per resource - 50.

    • For each resource, each tag key must be unique, and each tag key can have only one value.

    • Maximum key length - 128 Unicode characters in UTF-8.

    • Maximum value length - 256 Unicode characters in UTF-8.

    • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

    • Tag keys and values are case sensitive.

    • Do not use aws: , AWS: , or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

    • Key (string) -- [REQUIRED]

      One part of a key-value pair that makes up a tag. A key is a general label that acts like a category for more specific tag values.

    • Value (string) -- [REQUIRED]

      The optional part of a key-value pair that makes up a tag. A value acts as a descriptor within a tag category (key).

rtype

dict

returns

Response Syntax

{
    'ExplainabilityArn': 'string'
}

Response Structure

  • (dict) --

    • ExplainabilityArn (string) --

      The Amazon Resource Name (ARN) of the Explainability.

CreatePredictor (updated) Link ¶
Changes (request)
{'AutoMLOverrideStrategy': {'AccuracyOptimized'}}

Note

This operation creates a legacy predictor that does not include all the predictor functionalities provided by Amazon Forecast. To create a predictor that is compatible with all aspects of Forecast, use CreateAutoPredictor.

Creates an Amazon Forecast predictor.

In the request, provide a dataset group and either specify an algorithm or let Amazon Forecast choose an algorithm for you using AutoML. If you specify an algorithm, you also can override algorithm-specific hyperparameters.

Amazon Forecast uses the algorithm to train a predictor using the latest version of the datasets in the specified dataset group. You can then generate a forecast using the CreateForecast operation.

To see the evaluation metrics, use the GetAccuracyMetrics operation.

You can specify a featurization configuration to fill and aggregate the data fields in the TARGET_TIME_SERIES dataset to improve model training. For more information, see FeaturizationConfig .

For RELATED_TIME_SERIES datasets, CreatePredictor verifies that the DataFrequency specified when the dataset was created matches the ForecastFrequency . TARGET_TIME_SERIES datasets don't have this restriction. Amazon Forecast also verifies the delimiter and timestamp format. For more information, see howitworks-datasets-groups .

By default, predictors are trained and evaluated at the 0.1 (P10), 0.5 (P50), and 0.9 (P90) quantiles. You can choose custom forecast types to train and evaluate your predictor by setting the ForecastTypes .

AutoML

If you want Amazon Forecast to evaluate each algorithm and choose the one that minimizes the objective function , set PerformAutoML to true . The objective function is defined as the mean of the weighted losses over the forecast types. By default, these are the p10, p50, and p90 quantile losses. For more information, see EvaluationResult .

When AutoML is enabled, the following properties are disallowed:

  • AlgorithmArn

  • HPOConfig

  • PerformHPO

  • TrainingParameters

To get a list of all of your predictors, use the ListPredictors operation.

Note

Before you can use the predictor to create a forecast, the Status of the predictor must be ACTIVE , signifying that training has completed. To get the status, use the DescribePredictor operation.

See also: AWS API Documentation

Request Syntax

client.create_predictor(
    PredictorName='string',
    AlgorithmArn='string',
    ForecastHorizon=123,
    ForecastTypes=[
        'string',
    ],
    PerformAutoML=True|False,
    AutoMLOverrideStrategy='LatencyOptimized'|'AccuracyOptimized',
    PerformHPO=True|False,
    TrainingParameters={
        'string': 'string'
    },
    EvaluationParameters={
        'NumberOfBacktestWindows': 123,
        'BackTestWindowOffset': 123
    },
    HPOConfig={
        'ParameterRanges': {
            'CategoricalParameterRanges': [
                {
                    'Name': 'string',
                    'Values': [
                        'string',
                    ]
                },
            ],
            'ContinuousParameterRanges': [
                {
                    'Name': 'string',
                    'MaxValue': 123.0,
                    'MinValue': 123.0,
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'IntegerParameterRanges': [
                {
                    'Name': 'string',
                    'MaxValue': 123,
                    'MinValue': 123,
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ]
        }
    },
    InputDataConfig={
        'DatasetGroupArn': 'string',
        'SupplementaryFeatures': [
            {
                'Name': 'string',
                'Value': 'string'
            },
        ]
    },
    FeaturizationConfig={
        'ForecastFrequency': 'string',
        'ForecastDimensions': [
            'string',
        ],
        'Featurizations': [
            {
                'AttributeName': 'string',
                'FeaturizationPipeline': [
                    {
                        'FeaturizationMethodName': 'filling',
                        'FeaturizationMethodParameters': {
                            'string': 'string'
                        }
                    },
                ]
            },
        ]
    },
    EncryptionConfig={
        'RoleArn': 'string',
        'KMSKeyArn': 'string'
    },
    Tags=[
        {
            'Key': 'string',
            'Value': 'string'
        },
    ],
    OptimizationMetric='WAPE'|'RMSE'|'AverageWeightedQuantileLoss'|'MASE'|'MAPE'
)
type PredictorName

string

param PredictorName

[REQUIRED]

A name for the predictor.

type AlgorithmArn

string

param AlgorithmArn

The Amazon Resource Name (ARN) of the algorithm to use for model training. Required if PerformAutoML is not set to true .

Supported algorithms:

  • arn:aws:forecast:::algorithm/ARIMA

  • arn:aws:forecast:::algorithm/CNN-QR

  • arn:aws:forecast:::algorithm/Deep_AR_Plus

  • arn:aws:forecast:::algorithm/ETS

  • arn:aws:forecast:::algorithm/NPTS

  • arn:aws:forecast:::algorithm/Prophet

type ForecastHorizon

integer

param ForecastHorizon

[REQUIRED]

Specifies the number of time-steps that the model is trained to predict. The forecast horizon is also called the prediction length.

For example, if you configure a dataset for daily data collection (using the DataFrequency parameter of the CreateDataset operation) and set the forecast horizon to 10, the model returns predictions for 10 days.

The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset length.

type ForecastTypes

list

param ForecastTypes

Specifies the forecast types used to train a predictor. You can specify up to five forecast types. Forecast types can be quantiles from 0.01 to 0.99, by increments of 0.01 or higher. You can also specify the mean forecast with mean .

The default value is ["0.10", "0.50", "0.9"] .

  • (string) --

type PerformAutoML

boolean

param PerformAutoML

Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides and chooses the best algorithm and configuration for your training dataset.

The default value is false . In this case, you are required to specify an algorithm.

Set PerformAutoML to true to have Amazon Forecast perform AutoML. This is a good option if you aren't sure which algorithm is suitable for your training data. In this case, PerformHPO must be false.

type AutoMLOverrideStrategy

string

param AutoMLOverrideStrategy

Note

The LatencyOptimized AutoML override strategy is only available in private beta. Contact AWS Support or your account manager to learn more about access privileges.

Used to overide the default AutoML strategy, which is to optimize predictor accuracy. To apply an AutoML strategy that minimizes training time, use LatencyOptimized .

This parameter is only valid for predictors trained using AutoML.

type PerformHPO

boolean

param PerformHPO

Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your training data. The process of performing HPO is known as running a hyperparameter tuning job.

The default value is false . In this case, Amazon Forecast uses default hyperparameter values from the chosen algorithm.

To override the default values, set PerformHPO to true and, optionally, supply the HyperParameterTuningJobConfig object. The tuning job specifies a metric to optimize, which hyperparameters participate in tuning, and the valid range for each tunable hyperparameter. In this case, you are required to specify an algorithm and PerformAutoML must be false.

The following algorithms support HPO:

  • DeepAR+

  • CNN-QR

type TrainingParameters

dict

param TrainingParameters

The hyperparameters to override for model training. The hyperparameters that you can override are listed in the individual algorithms. For the list of supported algorithms, see aws-forecast-choosing-recipes .

  • (string) --

    • (string) --

type EvaluationParameters

dict

param EvaluationParameters

Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.

  • NumberOfBacktestWindows (integer) --

    The number of times to split the input data. The default is 1. Valid values are 1 through 5.

  • BackTestWindowOffset (integer) --

    The point from the end of the dataset where you want to split the data for model training and testing (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length.

    ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length

type HPOConfig

dict

param HPOConfig

Provides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon Forecast uses default values. The individual algorithms specify which hyperparameters support hyperparameter optimization (HPO). For more information, see aws-forecast-choosing-recipes .

If you included the HPOConfig object, you must set PerformHPO to true.

  • ParameterRanges (dict) --

    Specifies the ranges of valid values for the hyperparameters.

    • CategoricalParameterRanges (list) --

      Specifies the tunable range for each categorical hyperparameter.

      • (dict) --

        Specifies a categorical hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

        • Name (string) -- [REQUIRED]

          The name of the categorical hyperparameter to tune.

        • Values (list) -- [REQUIRED]

          A list of the tunable categories for the hyperparameter.

          • (string) --

    • ContinuousParameterRanges (list) --

      Specifies the tunable range for each continuous hyperparameter.

      • (dict) --

        Specifies a continuous hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

        • Name (string) -- [REQUIRED]

          The name of the hyperparameter to tune.

        • MaxValue (float) -- [REQUIRED]

          The maximum tunable value of the hyperparameter.

        • MinValue (float) -- [REQUIRED]

          The minimum tunable value of the hyperparameter.

        • ScalingType (string) --

          The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values:

          Auto

          Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter.

          Linear

          Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

          Logarithmic

          Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

          Logarithmic scaling works only for ranges that have values greater than 0.

          ReverseLogarithmic

          hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

          Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0.

          For information about choosing a hyperparameter scale, see Hyperparameter Scaling . One of the following values:

    • IntegerParameterRanges (list) --

      Specifies the tunable range for each integer hyperparameter.

      • (dict) --

        Specifies an integer hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

        • Name (string) -- [REQUIRED]

          The name of the hyperparameter to tune.

        • MaxValue (integer) -- [REQUIRED]

          The maximum tunable value of the hyperparameter.

        • MinValue (integer) -- [REQUIRED]

          The minimum tunable value of the hyperparameter.

        • ScalingType (string) --

          The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values:

          Auto

          Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter.

          Linear

          Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

          Logarithmic

          Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

          Logarithmic scaling works only for ranges that have values greater than 0.

          ReverseLogarithmic

          Not supported for IntegerParameterRange .

          Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0.

          For information about choosing a hyperparameter scale, see Hyperparameter Scaling . One of the following values:

type InputDataConfig

dict

param InputDataConfig

[REQUIRED]

Describes the dataset group that contains the data to use to train the predictor.

  • DatasetGroupArn (string) -- [REQUIRED]

    The Amazon Resource Name (ARN) of the dataset group.

  • SupplementaryFeatures (list) --

    An array of supplementary features. The only supported feature is a holiday calendar.

    • (dict) --

      Describes a supplementary feature of a dataset group. This object is part of the InputDataConfig object. Forecast supports the Weather Index and Holidays built-in featurizations.

      Weather Index

      The Amazon Forecast Weather Index is a built-in featurization that incorporates historical and projected weather information into your model. The Weather Index supplements your datasets with over two years of historical weather data and up to 14 days of projected weather data. For more information, see Amazon Forecast Weather Index .

      Holidays

      Holidays is a built-in featurization that incorporates a feature-engineered dataset of national holiday information into your model. It provides native support for the holiday calendars of 66 countries. To view the holiday calendars, refer to the Jollyday library. For more information, see Holidays Featurization .

      • Name (string) -- [REQUIRED]

        The name of the feature. Valid values: "holiday" and "weather" .

      • Value (string) -- [REQUIRED]

        Weather Index

        To enable the Weather Index, set the value to "true"

        Holidays

        To enable Holidays, specify a country with one of the following two-letter country codes:

        • "AL" - ALBANIA

        • "AR" - ARGENTINA

        • "AT" - AUSTRIA

        • "AU" - AUSTRALIA

        • "BA" - BOSNIA HERZEGOVINA

        • "BE" - BELGIUM

        • "BG" - BULGARIA

        • "BO" - BOLIVIA

        • "BR" - BRAZIL

        • "BY" - BELARUS

        • "CA" - CANADA

        • "CL" - CHILE

        • "CO" - COLOMBIA

        • "CR" - COSTA RICA

        • "HR" - CROATIA

        • "CZ" - CZECH REPUBLIC

        • "DK" - DENMARK

        • "EC" - ECUADOR

        • "EE" - ESTONIA

        • "ET" - ETHIOPIA

        • "FI" - FINLAND

        • "FR" - FRANCE

        • "DE" - GERMANY

        • "GR" - GREECE

        • "HU" - HUNGARY

        • "IS" - ICELAND

        • "IN" - INDIA

        • "IE" - IRELAND

        • "IT" - ITALY

        • "JP" - JAPAN

        • "KZ" - KAZAKHSTAN

        • "KR" - KOREA

        • "LV" - LATVIA

        • "LI" - LIECHTENSTEIN

        • "LT" - LITHUANIA

        • "LU" - LUXEMBOURG

        • "MK" - MACEDONIA

        • "MT" - MALTA

        • "MX" - MEXICO

        • "MD" - MOLDOVA

        • "ME" - MONTENEGRO

        • "NL" - NETHERLANDS

        • "NZ" - NEW ZEALAND

        • "NI" - NICARAGUA

        • "NG" - NIGERIA

        • "NO" - NORWAY

        • "PA" - PANAMA

        • "PY" - PARAGUAY

        • "PE" - PERU

        • "PL" - POLAND

        • "PT" - PORTUGAL

        • "RO" - ROMANIA

        • "RU" - RUSSIA

        • "RS" - SERBIA

        • "SK" - SLOVAKIA

        • "SI" - SLOVENIA

        • "ZA" - SOUTH AFRICA

        • "ES" - SPAIN

        • "SE" - SWEDEN

        • "CH" - SWITZERLAND

        • "UA" - UKRAINE

        • "AE" - UNITED ARAB EMIRATES

        • "US" - UNITED STATES

        • "UK" - UNITED KINGDOM

        • "UY" - URUGUAY

        • "VE" - VENEZUELA

type FeaturizationConfig

dict

param FeaturizationConfig

[REQUIRED]

The featurization configuration.

  • ForecastFrequency (string) -- [REQUIRED]

    The frequency of predictions in a forecast.

    Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates every year and "5min" indicates every five minutes.

    The frequency must be greater than or equal to the TARGET_TIME_SERIES dataset frequency.

    When a RELATED_TIME_SERIES dataset is provided, the frequency must be equal to the RELATED_TIME_SERIES dataset frequency.

  • ForecastDimensions (list) --

    An array of dimension (field) names that specify how to group the generated forecast.

    For example, suppose that you are generating a forecast for item sales across all of your stores, and your dataset contains a store_id field. If you want the sales forecast for each item by store, you would specify store_id as the dimension.

    All forecast dimensions specified in the TARGET_TIME_SERIES dataset don't need to be specified in the CreatePredictor request. All forecast dimensions specified in the RELATED_TIME_SERIES dataset must be specified in the CreatePredictor request.

    • (string) --

  • Featurizations (list) --

    An array of featurization (transformation) information for the fields of a dataset.

    • (dict) --

      Provides featurization (transformation) information for a dataset field. This object is part of the FeaturizationConfig object.

      For example:

      {

      "AttributeName": "demand",

      FeaturizationPipeline [ {

      "FeaturizationMethodName": "filling",

      "FeaturizationMethodParameters": {"aggregation": "avg", "backfill": "nan"}

      } ]

      }

      • AttributeName (string) -- [REQUIRED]

        The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports the target field of the TARGET_TIME_SERIES and the RELATED_TIME_SERIES datasets. For example, for the RETAIL domain, the target is demand , and for the CUSTOM domain, the target is target_value . For more information, see howitworks-missing-values .

      • FeaturizationPipeline (list) --

        An array of one FeaturizationMethod object that specifies the feature transformation method.

        • (dict) --

          Provides information about the method that featurizes (transforms) a dataset field. The method is part of the FeaturizationPipeline of the Featurization object.

          The following is an example of how you specify a FeaturizationMethod object.

          {

          "FeaturizationMethodName": "filling",

          "FeaturizationMethodParameters": {"aggregation": "sum", "middlefill": "zero", "backfill": "zero"}

          }

          • FeaturizationMethodName (string) -- [REQUIRED]

            The name of the method. The "filling" method is the only supported method.

          • FeaturizationMethodParameters (dict) --

            The method parameters (key-value pairs), which are a map of override parameters. Specify these parameters to override the default values. Related Time Series attributes do not accept aggregation parameters.

            The following list shows the parameters and their valid values for the "filling" featurization method for a Target Time Series dataset. Bold signifies the default value.

            • aggregation : sum , avg , first , min , max

            • frontfill : none

            • middlefill : zero , nan (not a number), value , median , mean , min , max

            • backfill : zero , nan , value , median , mean , min , max

            The following list shows the parameters and their valid values for a Related Time Series featurization method (there are no defaults):

            • middlefill : zero , value , median , mean , min , max

            • backfill : zero , value , median , mean , min , max

            • futurefill : zero , value , median , mean , min , max

            To set a filling method to a specific value, set the fill parameter to value and define the value in a corresponding _value parameter. For example, to set backfilling to a value of 2, include the following: "backfill": "value" and "backfill_value":"2" .

            • (string) --

              • (string) --

type EncryptionConfig

dict

param EncryptionConfig

An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.

  • RoleArn (string) -- [REQUIRED]

    The ARN of the IAM role that Amazon Forecast can assume to access the AWS KMS key.

    Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

  • KMSKeyArn (string) -- [REQUIRED]

    The Amazon Resource Name (ARN) of the KMS key.

type Tags

list

param Tags

The optional metadata that you apply to the predictor to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

The following basic restrictions apply to tags:

  • Maximum number of tags per resource - 50.

  • For each resource, each tag key must be unique, and each tag key can have only one value.

  • Maximum key length - 128 Unicode characters in UTF-8.

  • Maximum value length - 256 Unicode characters in UTF-8.

  • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

  • Tag keys and values are case sensitive.

  • Do not use aws: , AWS: , or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

  • (dict) --

    The optional metadata that you apply to a resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

    The following basic restrictions apply to tags:

    • Maximum number of tags per resource - 50.

    • For each resource, each tag key must be unique, and each tag key can have only one value.

    • Maximum key length - 128 Unicode characters in UTF-8.

    • Maximum value length - 256 Unicode characters in UTF-8.

    • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

    • Tag keys and values are case sensitive.

    • Do not use aws: , AWS: , or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

    • Key (string) -- [REQUIRED]

      One part of a key-value pair that makes up a tag. A key is a general label that acts like a category for more specific tag values.

    • Value (string) -- [REQUIRED]

      The optional part of a key-value pair that makes up a tag. A value acts as a descriptor within a tag category (key).

type OptimizationMetric

string

param OptimizationMetric

The accuracy metric used to optimize the predictor.

rtype

dict

returns

Response Syntax

{
    'PredictorArn': 'string'
}

Response Structure

  • (dict) --

    • PredictorArn (string) --

      The Amazon Resource Name (ARN) of the predictor.

DescribePredictor (updated) Link ¶
Changes (response)
{'AutoMLOverrideStrategy': {'AccuracyOptimized'}, 'IsAutoPredictor': 'boolean'}

Note

This operation is only valid for legacy predictors created with CreatePredictor. If you are not using a legacy predictor, use DescribeAutoPredictor.

To upgrade a legacy predictor to AutoPredictor, see Upgrading to AutoPredictor.

Describes a predictor created using the CreatePredictor operation.

In addition to listing the properties provided in the CreatePredictor request, this operation lists the following properties:

  • DatasetImportJobArns - The dataset import jobs used to import training data.

  • AutoMLAlgorithmArns - If AutoML is performed, the algorithms that were evaluated.

  • CreationTime

  • LastModificationTime

  • Status

  • Message - If an error occurred, information about the error.

See also: AWS API Documentation

Request Syntax

client.describe_predictor(
    PredictorArn='string'
)
type PredictorArn

string

param PredictorArn

[REQUIRED]

The Amazon Resource Name (ARN) of the predictor that you want information about.

rtype

dict

returns

Response Syntax

{
    'PredictorArn': 'string',
    'PredictorName': 'string',
    'AlgorithmArn': 'string',
    'AutoMLAlgorithmArns': [
        'string',
    ],
    'ForecastHorizon': 123,
    'ForecastTypes': [
        'string',
    ],
    'PerformAutoML': True|False,
    'AutoMLOverrideStrategy': 'LatencyOptimized'|'AccuracyOptimized',
    'PerformHPO': True|False,
    'TrainingParameters': {
        'string': 'string'
    },
    'EvaluationParameters': {
        'NumberOfBacktestWindows': 123,
        'BackTestWindowOffset': 123
    },
    'HPOConfig': {
        'ParameterRanges': {
            'CategoricalParameterRanges': [
                {
                    'Name': 'string',
                    'Values': [
                        'string',
                    ]
                },
            ],
            'ContinuousParameterRanges': [
                {
                    'Name': 'string',
                    'MaxValue': 123.0,
                    'MinValue': 123.0,
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ],
            'IntegerParameterRanges': [
                {
                    'Name': 'string',
                    'MaxValue': 123,
                    'MinValue': 123,
                    'ScalingType': 'Auto'|'Linear'|'Logarithmic'|'ReverseLogarithmic'
                },
            ]
        }
    },
    'InputDataConfig': {
        'DatasetGroupArn': 'string',
        'SupplementaryFeatures': [
            {
                'Name': 'string',
                'Value': 'string'
            },
        ]
    },
    'FeaturizationConfig': {
        'ForecastFrequency': 'string',
        'ForecastDimensions': [
            'string',
        ],
        'Featurizations': [
            {
                'AttributeName': 'string',
                'FeaturizationPipeline': [
                    {
                        'FeaturizationMethodName': 'filling',
                        'FeaturizationMethodParameters': {
                            'string': 'string'
                        }
                    },
                ]
            },
        ]
    },
    'EncryptionConfig': {
        'RoleArn': 'string',
        'KMSKeyArn': 'string'
    },
    'PredictorExecutionDetails': {
        'PredictorExecutions': [
            {
                'AlgorithmArn': 'string',
                'TestWindows': [
                    {
                        'TestWindowStart': datetime(2015, 1, 1),
                        'TestWindowEnd': datetime(2015, 1, 1),
                        'Status': 'string',
                        'Message': 'string'
                    },
                ]
            },
        ]
    },
    'EstimatedTimeRemainingInMinutes': 123,
    'IsAutoPredictor': True|False,
    'DatasetImportJobArns': [
        'string',
    ],
    'Status': 'string',
    'Message': 'string',
    'CreationTime': datetime(2015, 1, 1),
    'LastModificationTime': datetime(2015, 1, 1),
    'OptimizationMetric': 'WAPE'|'RMSE'|'AverageWeightedQuantileLoss'|'MASE'|'MAPE'
}

Response Structure

  • (dict) --

    • PredictorArn (string) --

      The ARN of the predictor.

    • PredictorName (string) --

      The name of the predictor.

    • AlgorithmArn (string) --

      The Amazon Resource Name (ARN) of the algorithm used for model training.

    • AutoMLAlgorithmArns (list) --

      When PerformAutoML is specified, the ARN of the chosen algorithm.

      • (string) --

    • ForecastHorizon (integer) --

      The number of time-steps of the forecast. The forecast horizon is also called the prediction length.

    • ForecastTypes (list) --

      The forecast types used during predictor training. Default value is ["0.1","0.5","0.9"]

      • (string) --

    • PerformAutoML (boolean) --

      Whether the predictor is set to perform AutoML.

    • AutoMLOverrideStrategy (string) --

      Note

      The LatencyOptimized AutoML override strategy is only available in private beta. Contact AWS Support or your account manager to learn more about access privileges.

      The AutoML strategy used to train the predictor. Unless LatencyOptimized is specified, the AutoML strategy optimizes predictor accuracy.

      This parameter is only valid for predictors trained using AutoML.

    • PerformHPO (boolean) --

      Whether the predictor is set to perform hyperparameter optimization (HPO).

    • TrainingParameters (dict) --

      The default training parameters or overrides selected during model training. When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values for the chosen hyperparameters are returned. For more information, see aws-forecast-choosing-recipes .

      • (string) --

        • (string) --

    • EvaluationParameters (dict) --

      Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.

      • NumberOfBacktestWindows (integer) --

        The number of times to split the input data. The default is 1. Valid values are 1 through 5.

      • BackTestWindowOffset (integer) --

        The point from the end of the dataset where you want to split the data for model training and testing (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length.

        ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length

    • HPOConfig (dict) --

      The hyperparameter override values for the algorithm.

      • ParameterRanges (dict) --

        Specifies the ranges of valid values for the hyperparameters.

        • CategoricalParameterRanges (list) --

          Specifies the tunable range for each categorical hyperparameter.

          • (dict) --

            Specifies a categorical hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

            • Name (string) --

              The name of the categorical hyperparameter to tune.

            • Values (list) --

              A list of the tunable categories for the hyperparameter.

              • (string) --

        • ContinuousParameterRanges (list) --

          Specifies the tunable range for each continuous hyperparameter.

          • (dict) --

            Specifies a continuous hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

            • Name (string) --

              The name of the hyperparameter to tune.

            • MaxValue (float) --

              The maximum tunable value of the hyperparameter.

            • MinValue (float) --

              The minimum tunable value of the hyperparameter.

            • ScalingType (string) --

              The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values:

              Auto

              Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter.

              Linear

              Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

              Logarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

              Logarithmic scaling works only for ranges that have values greater than 0.

              ReverseLogarithmic

              hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

              Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0.

              For information about choosing a hyperparameter scale, see Hyperparameter Scaling . One of the following values:

        • IntegerParameterRanges (list) --

          Specifies the tunable range for each integer hyperparameter.

          • (dict) --

            Specifies an integer hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

            • Name (string) --

              The name of the hyperparameter to tune.

            • MaxValue (integer) --

              The maximum tunable value of the hyperparameter.

            • MinValue (integer) --

              The minimum tunable value of the hyperparameter.

            • ScalingType (string) --

              The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values:

              Auto

              Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter.

              Linear

              Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.

              Logarithmic

              Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

              Logarithmic scaling works only for ranges that have values greater than 0.

              ReverseLogarithmic

              Not supported for IntegerParameterRange .

              Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0.

              For information about choosing a hyperparameter scale, see Hyperparameter Scaling . One of the following values:

    • InputDataConfig (dict) --

      Describes the dataset group that contains the data to use to train the predictor.

      • DatasetGroupArn (string) --

        The Amazon Resource Name (ARN) of the dataset group.

      • SupplementaryFeatures (list) --

        An array of supplementary features. The only supported feature is a holiday calendar.

        • (dict) --

          Describes a supplementary feature of a dataset group. This object is part of the InputDataConfig object. Forecast supports the Weather Index and Holidays built-in featurizations.

          Weather Index

          The Amazon Forecast Weather Index is a built-in featurization that incorporates historical and projected weather information into your model. The Weather Index supplements your datasets with over two years of historical weather data and up to 14 days of projected weather data. For more information, see Amazon Forecast Weather Index .

          Holidays

          Holidays is a built-in featurization that incorporates a feature-engineered dataset of national holiday information into your model. It provides native support for the holiday calendars of 66 countries. To view the holiday calendars, refer to the Jollyday library. For more information, see Holidays Featurization .

          • Name (string) --

            The name of the feature. Valid values: "holiday" and "weather" .

          • Value (string) --

            Weather Index

            To enable the Weather Index, set the value to "true"

            Holidays

            To enable Holidays, specify a country with one of the following two-letter country codes:

            • "AL" - ALBANIA

            • "AR" - ARGENTINA

            • "AT" - AUSTRIA

            • "AU" - AUSTRALIA

            • "BA" - BOSNIA HERZEGOVINA

            • "BE" - BELGIUM

            • "BG" - BULGARIA

            • "BO" - BOLIVIA

            • "BR" - BRAZIL

            • "BY" - BELARUS

            • "CA" - CANADA

            • "CL" - CHILE

            • "CO" - COLOMBIA

            • "CR" - COSTA RICA

            • "HR" - CROATIA

            • "CZ" - CZECH REPUBLIC

            • "DK" - DENMARK

            • "EC" - ECUADOR

            • "EE" - ESTONIA

            • "ET" - ETHIOPIA

            • "FI" - FINLAND

            • "FR" - FRANCE

            • "DE" - GERMANY

            • "GR" - GREECE

            • "HU" - HUNGARY

            • "IS" - ICELAND

            • "IN" - INDIA

            • "IE" - IRELAND

            • "IT" - ITALY

            • "JP" - JAPAN

            • "KZ" - KAZAKHSTAN

            • "KR" - KOREA

            • "LV" - LATVIA

            • "LI" - LIECHTENSTEIN

            • "LT" - LITHUANIA

            • "LU" - LUXEMBOURG

            • "MK" - MACEDONIA

            • "MT" - MALTA

            • "MX" - MEXICO

            • "MD" - MOLDOVA

            • "ME" - MONTENEGRO

            • "NL" - NETHERLANDS

            • "NZ" - NEW ZEALAND

            • "NI" - NICARAGUA

            • "NG" - NIGERIA

            • "NO" - NORWAY

            • "PA" - PANAMA

            • "PY" - PARAGUAY

            • "PE" - PERU

            • "PL" - POLAND

            • "PT" - PORTUGAL

            • "RO" - ROMANIA

            • "RU" - RUSSIA

            • "RS" - SERBIA

            • "SK" - SLOVAKIA

            • "SI" - SLOVENIA

            • "ZA" - SOUTH AFRICA

            • "ES" - SPAIN

            • "SE" - SWEDEN

            • "CH" - SWITZERLAND

            • "UA" - UKRAINE

            • "AE" - UNITED ARAB EMIRATES

            • "US" - UNITED STATES

            • "UK" - UNITED KINGDOM

            • "UY" - URUGUAY

            • "VE" - VENEZUELA

    • FeaturizationConfig (dict) --

      The featurization configuration.

      • ForecastFrequency (string) --

        The frequency of predictions in a forecast.

        Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates every year and "5min" indicates every five minutes.

        The frequency must be greater than or equal to the TARGET_TIME_SERIES dataset frequency.

        When a RELATED_TIME_SERIES dataset is provided, the frequency must be equal to the RELATED_TIME_SERIES dataset frequency.

      • ForecastDimensions (list) --

        An array of dimension (field) names that specify how to group the generated forecast.

        For example, suppose that you are generating a forecast for item sales across all of your stores, and your dataset contains a store_id field. If you want the sales forecast for each item by store, you would specify store_id as the dimension.

        All forecast dimensions specified in the TARGET_TIME_SERIES dataset don't need to be specified in the CreatePredictor request. All forecast dimensions specified in the RELATED_TIME_SERIES dataset must be specified in the CreatePredictor request.

        • (string) --

      • Featurizations (list) --

        An array of featurization (transformation) information for the fields of a dataset.

        • (dict) --

          Provides featurization (transformation) information for a dataset field. This object is part of the FeaturizationConfig object.

          For example:

          {

          "AttributeName": "demand",

          FeaturizationPipeline [ {

          "FeaturizationMethodName": "filling",

          "FeaturizationMethodParameters": {"aggregation": "avg", "backfill": "nan"}

          } ]

          }

          • AttributeName (string) --

            The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports the target field of the TARGET_TIME_SERIES and the RELATED_TIME_SERIES datasets. For example, for the RETAIL domain, the target is demand , and for the CUSTOM domain, the target is target_value . For more information, see howitworks-missing-values .

          • FeaturizationPipeline (list) --

            An array of one FeaturizationMethod object that specifies the feature transformation method.

            • (dict) --

              Provides information about the method that featurizes (transforms) a dataset field. The method is part of the FeaturizationPipeline of the Featurization object.

              The following is an example of how you specify a FeaturizationMethod object.

              {

              "FeaturizationMethodName": "filling",

              "FeaturizationMethodParameters": {"aggregation": "sum", "middlefill": "zero", "backfill": "zero"}

              }

              • FeaturizationMethodName (string) --

                The name of the method. The "filling" method is the only supported method.

              • FeaturizationMethodParameters (dict) --

                The method parameters (key-value pairs), which are a map of override parameters. Specify these parameters to override the default values. Related Time Series attributes do not accept aggregation parameters.

                The following list shows the parameters and their valid values for the "filling" featurization method for a Target Time Series dataset. Bold signifies the default value.

                • aggregation : sum , avg , first , min , max

                • frontfill : none

                • middlefill : zero , nan (not a number), value , median , mean , min , max

                • backfill : zero , nan , value , median , mean , min , max

                The following list shows the parameters and their valid values for a Related Time Series featurization method (there are no defaults):

                • middlefill : zero , value , median , mean , min , max

                • backfill : zero , value , median , mean , min , max

                • futurefill : zero , value , median , mean , min , max

                To set a filling method to a specific value, set the fill parameter to value and define the value in a corresponding _value parameter. For example, to set backfilling to a value of 2, include the following: "backfill": "value" and "backfill_value":"2" .

                • (string) --

                  • (string) --

    • EncryptionConfig (dict) --

      An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.

      • RoleArn (string) --

        The ARN of the IAM role that Amazon Forecast can assume to access the AWS KMS key.

        Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

      • KMSKeyArn (string) --

        The Amazon Resource Name (ARN) of the KMS key.

    • PredictorExecutionDetails (dict) --

      Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You specify the number of backtests to perform when you call the operation.

      • PredictorExecutions (list) --

        An array of the backtests performed to evaluate the accuracy of the predictor against a particular algorithm. The NumberOfBacktestWindows from the object determines the number of windows in the array.

        • (dict) --

          The algorithm used to perform a backtest and the status of those tests.

          • AlgorithmArn (string) --

            The ARN of the algorithm used to test the predictor.

          • TestWindows (list) --

            An array of test windows used to evaluate the algorithm. The NumberOfBacktestWindows from the object determines the number of windows in the array.

            • (dict) --

              The status, start time, and end time of a backtest, as well as a failure reason if applicable.

              • TestWindowStart (datetime) --

                The time at which the test began.

              • TestWindowEnd (datetime) --

                The time at which the test ended.

              • Status (string) --

                The status of the test. Possible status values are:

                • ACTIVE

                • CREATE_IN_PROGRESS

                • CREATE_FAILED

              • Message (string) --

                If the test failed, the reason why it failed.

    • EstimatedTimeRemainingInMinutes (integer) --

      The estimated time remaining in minutes for the predictor training job to complete.

    • IsAutoPredictor (boolean) --

      Whether the predictor was created with CreateAutoPredictor .

    • DatasetImportJobArns (list) --

      An array of the ARNs of the dataset import jobs used to import training data for the predictor.

      • (string) --

    • Status (string) --

      The status of the predictor. States include:

      • ACTIVE

      • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED

      • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED

      • CREATE_STOPPING , CREATE_STOPPED

      Note

      The Status of the predictor must be ACTIVE before you can use the predictor to create a forecast.

    • Message (string) --

      If an error occurred, an informational message about the error.

    • CreationTime (datetime) --

      When the model training task was created.

    • LastModificationTime (datetime) --

      The last time the resource was modified. The timestamp depends on the status of the job:

      • CREATE_PENDING - The CreationTime .

      • CREATE_IN_PROGRESS - The current timestamp.

      • CREATE_STOPPING - The current timestamp.

      • CREATE_STOPPED - When the job stopped.

      • ACTIVE or CREATE_FAILED - When the job finished or failed.

    • OptimizationMetric (string) --

      The accuracy metric used to optimize the predictor.

GetAccuracyMetrics (updated) Link ¶
Changes (response)
{'AutoMLOverrideStrategy': {'AccuracyOptimized'}, 'IsAutoPredictor': 'boolean'}

Provides metrics on the accuracy of the models that were trained by the CreatePredictor operation. Use metrics to see how well the model performed and to decide whether to use the predictor to generate a forecast. For more information, see Predictor Metrics .

This operation generates metrics for each backtest window that was evaluated. The number of backtest windows (NumberOfBacktestWindows ) is specified using the EvaluationParameters object, which is optionally included in the CreatePredictor request. If NumberOfBacktestWindows isn't specified, the number defaults to one.

The parameters of the filling method determine which items contribute to the metrics. If you want all items to contribute, specify zero . If you want only those items that have complete data in the range being evaluated to contribute, specify nan . For more information, see FeaturizationMethod .

Note

Before you can get accuracy metrics, the Status of the predictor must be ACTIVE , signifying that training has completed. To get the status, use the DescribePredictor operation.

See also: AWS API Documentation

Request Syntax

client.get_accuracy_metrics(
    PredictorArn='string'
)
type PredictorArn

string

param PredictorArn

[REQUIRED]

The Amazon Resource Name (ARN) of the predictor to get metrics for.

rtype

dict

returns

Response Syntax

{
    'PredictorEvaluationResults': [
        {
            'AlgorithmArn': 'string',
            'TestWindows': [
                {
                    'TestWindowStart': datetime(2015, 1, 1),
                    'TestWindowEnd': datetime(2015, 1, 1),
                    'ItemCount': 123,
                    'EvaluationType': 'SUMMARY'|'COMPUTED',
                    'Metrics': {
                        'RMSE': 123.0,
                        'WeightedQuantileLosses': [
                            {
                                'Quantile': 123.0,
                                'LossValue': 123.0
                            },
                        ],
                        'ErrorMetrics': [
                            {
                                'ForecastType': 'string',
                                'WAPE': 123.0,
                                'RMSE': 123.0,
                                'MASE': 123.0,
                                'MAPE': 123.0
                            },
                        ],
                        'AverageWeightedQuantileLoss': 123.0
                    }
                },
            ]
        },
    ],
    'IsAutoPredictor': True|False,
    'AutoMLOverrideStrategy': 'LatencyOptimized'|'AccuracyOptimized',
    'OptimizationMetric': 'WAPE'|'RMSE'|'AverageWeightedQuantileLoss'|'MASE'|'MAPE'
}

Response Structure

  • (dict) --

    • PredictorEvaluationResults (list) --

      An array of results from evaluating the predictor.

      • (dict) --

        The results of evaluating an algorithm. Returned as part of the GetAccuracyMetrics response.

        • AlgorithmArn (string) --

          The Amazon Resource Name (ARN) of the algorithm that was evaluated.

        • TestWindows (list) --

          The array of test windows used for evaluating the algorithm. The NumberOfBacktestWindows from the EvaluationParameters object determines the number of windows in the array.

          • (dict) --

            The metrics for a time range within the evaluation portion of a dataset. This object is part of the EvaluationResult object.

            The TestWindowStart and TestWindowEnd parameters are determined by the BackTestWindowOffset parameter of the EvaluationParameters object.

            • TestWindowStart (datetime) --

              The timestamp that defines the start of the window.

            • TestWindowEnd (datetime) --

              The timestamp that defines the end of the window.

            • ItemCount (integer) --

              The number of data points within the window.

            • EvaluationType (string) --

              The type of evaluation.

              • SUMMARY - The average metrics across all windows.

              • COMPUTED - The metrics for the specified window.

            • Metrics (dict) --

              Provides metrics used to evaluate the performance of a predictor.

              • RMSE (float) --

                The root-mean-square error (RMSE).

              • WeightedQuantileLosses (list) --

                An array of weighted quantile losses. Quantiles divide a probability distribution into regions of equal probability. The distribution in this case is the loss function.

                • (dict) --

                  The weighted loss value for a quantile. This object is part of the Metrics object.

                  • Quantile (float) --

                    The quantile. Quantiles divide a probability distribution into regions of equal probability. For example, if the distribution was divided into 5 regions of equal probability, the quantiles would be 0.2, 0.4, 0.6, and 0.8.

                  • LossValue (float) --

                    The difference between the predicted value and the actual value over the quantile, weighted (normalized) by dividing by the sum over all quantiles.

              • ErrorMetrics (list) --

                Provides detailed error metrics for each forecast type. Metrics include root-mean square-error (RMSE), mean absolute percentage error (MAPE), mean absolute scaled error (MASE), and weighted average percentage error (WAPE).

                • (dict) --

                  Provides detailed error metrics to evaluate the performance of a predictor. This object is part of the Metrics object.

                  • ForecastType (string) --

                    The Forecast type used to compute WAPE, MAPE, MASE, and RMSE.

                  • WAPE (float) --

                    The weighted absolute percentage error (WAPE).

                  • RMSE (float) --

                    The root-mean-square error (RMSE).

                  • MASE (float) --

                    The Mean Absolute Scaled Error (MASE)

                  • MAPE (float) --

                    The Mean Absolute Percentage Error (MAPE)

              • AverageWeightedQuantileLoss (float) --

                The average value of all weighted quantile losses.

    • IsAutoPredictor (boolean) --

      Whether the predictor was created with CreateAutoPredictor .

    • AutoMLOverrideStrategy (string) --

      Note

      The LatencyOptimized AutoML override strategy is only available in private beta. Contact AWS Support or your account manager to learn more about access privileges.

      The AutoML strategy used to train the predictor. Unless LatencyOptimized is specified, the AutoML strategy optimizes predictor accuracy.

      This parameter is only valid for predictors trained using AutoML.

    • OptimizationMetric (string) --

      The accuracy metric used to optimize the predictor.

ListForecasts (updated) Link ¶
Changes (response)
{'Forecasts': {'CreatedUsingAutoPredictor': 'boolean'}}

Returns a list of forecasts created using the CreateForecast operation. For each forecast, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). To retrieve the complete set of properties, specify the ARN with the DescribeForecast operation. You can filter the list using an array of Filter objects.

See also: AWS API Documentation

Request Syntax

client.list_forecasts(
    NextToken='string',
    MaxResults=123,
    Filters=[
        {
            'Key': 'string',
            'Value': 'string',
            'Condition': 'IS'|'IS_NOT'
        },
    ]
)
type NextToken

string

param NextToken

If the result of the previous request was truncated, the response includes a NextToken . To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.

type MaxResults

integer

param MaxResults

The number of items to return in the response.

type Filters

list

param Filters

An array of filters. For each filter, you provide a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the forecasts that match the statement from the list, respectively. The match statement consists of a key and a value.

Filter properties

  • Condition - The condition to apply. Valid values are IS and IS_NOT . To include the forecasts that match the statement, specify IS . To exclude matching forecasts, specify IS_NOT .

  • Key - The name of the parameter to filter on. Valid values are DatasetGroupArn , PredictorArn , and Status .

  • Value - The value to match.

For example, to list all forecasts whose status is not ACTIVE, you would specify:

"Filters": [ { "Condition": "IS_NOT", "Key": "Status", "Value": "ACTIVE" } ]

  • (dict) --

    Describes a filter for choosing a subset of objects. Each filter consists of a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the objects that match the statement, respectively. The match statement consists of a key and a value.

    • Key (string) -- [REQUIRED]

      The name of the parameter to filter on.

    • Value (string) -- [REQUIRED]

      The value to match.

    • Condition (string) -- [REQUIRED]

      The condition to apply. To include the objects that match the statement, specify IS . To exclude matching objects, specify IS_NOT .

rtype

dict

returns

Response Syntax

{
    'Forecasts': [
        {
            'ForecastArn': 'string',
            'ForecastName': 'string',
            'PredictorArn': 'string',
            'CreatedUsingAutoPredictor': True|False,
            'DatasetGroupArn': 'string',
            'Status': 'string',
            'Message': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Forecasts (list) --

      An array of objects that summarize each forecast's properties.

      • (dict) --

        Provides a summary of the forecast properties used in the ListForecasts operation. To get the complete set of properties, call the DescribeForecast operation, and provide the ForecastArn that is listed in the summary.

        • ForecastArn (string) --

          The ARN of the forecast.

        • ForecastName (string) --

          The name of the forecast.

        • PredictorArn (string) --

          The ARN of the predictor used to generate the forecast.

        • CreatedUsingAutoPredictor (boolean) --

        • DatasetGroupArn (string) --

          The Amazon Resource Name (ARN) of the dataset group that provided the data used to train the predictor.

        • Status (string) --

          The status of the forecast. States include:

          • ACTIVE

          • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED

          • CREATE_STOPPING , CREATE_STOPPED

          • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED

          Note

          The Status of the forecast must be ACTIVE before you can query or export the forecast.

        • Message (string) --

          If an error occurred, an informational message about the error.

        • CreationTime (datetime) --

          When the forecast creation task was created.

        • LastModificationTime (datetime) --

          The last time the resource was modified. The timestamp depends on the status of the job:

          • CREATE_PENDING - The CreationTime .

          • CREATE_IN_PROGRESS - The current timestamp.

          • CREATE_STOPPING - The current timestamp.

          • CREATE_STOPPED - When the job stopped.

          • ACTIVE or CREATE_FAILED - When the job finished or failed.

    • NextToken (string) --

      If the response is truncated, Amazon Forecast returns this token. To retrieve the next set of results, use the token in the next request.

ListPredictors (updated) Link ¶
Changes (response)
{'Predictors': {'IsAutoPredictor': 'boolean',
                'ReferencePredictorSummary': {'Arn': 'string',
                                              'State': 'Active | Deleted'}}}

Returns a list of predictors created using the CreatePredictor operation. For each predictor, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). You can retrieve the complete set of properties by using the ARN with the DescribePredictor operation. You can filter the list using an array of Filter objects.

See also: AWS API Documentation

Request Syntax

client.list_predictors(
    NextToken='string',
    MaxResults=123,
    Filters=[
        {
            'Key': 'string',
            'Value': 'string',
            'Condition': 'IS'|'IS_NOT'
        },
    ]
)
type NextToken

string

param NextToken

If the result of the previous request was truncated, the response includes a NextToken . To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.

type MaxResults

integer

param MaxResults

The number of items to return in the response.

type Filters

list

param Filters

An array of filters. For each filter, you provide a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the predictors that match the statement from the list, respectively. The match statement consists of a key and a value.

Filter properties

  • Condition - The condition to apply. Valid values are IS and IS_NOT . To include the predictors that match the statement, specify IS . To exclude matching predictors, specify IS_NOT .

  • Key - The name of the parameter to filter on. Valid values are DatasetGroupArn and Status .

  • Value - The value to match.

For example, to list all predictors whose status is ACTIVE, you would specify:

"Filters": [ { "Condition": "IS", "Key": "Status", "Value": "ACTIVE" } ]

  • (dict) --

    Describes a filter for choosing a subset of objects. Each filter consists of a condition and a match statement. The condition is either IS or IS_NOT , which specifies whether to include or exclude the objects that match the statement, respectively. The match statement consists of a key and a value.

    • Key (string) -- [REQUIRED]

      The name of the parameter to filter on.

    • Value (string) -- [REQUIRED]

      The value to match.

    • Condition (string) -- [REQUIRED]

      The condition to apply. To include the objects that match the statement, specify IS . To exclude matching objects, specify IS_NOT .

rtype

dict

returns

Response Syntax

{
    'Predictors': [
        {
            'PredictorArn': 'string',
            'PredictorName': 'string',
            'DatasetGroupArn': 'string',
            'IsAutoPredictor': True|False,
            'ReferencePredictorSummary': {
                'Arn': 'string',
                'State': 'Active'|'Deleted'
            },
            'Status': 'string',
            'Message': 'string',
            'CreationTime': datetime(2015, 1, 1),
            'LastModificationTime': datetime(2015, 1, 1)
        },
    ],
    'NextToken': 'string'
}

Response Structure

  • (dict) --

    • Predictors (list) --

      An array of objects that summarize each predictor's properties.

      • (dict) --

        Provides a summary of the predictor properties that are used in the ListPredictors operation. To get the complete set of properties, call the DescribePredictor operation, and provide the listed PredictorArn .

        • PredictorArn (string) --

          The ARN of the predictor.

        • PredictorName (string) --

          The name of the predictor.

        • DatasetGroupArn (string) --

          The Amazon Resource Name (ARN) of the dataset group that contains the data used to train the predictor.

        • IsAutoPredictor (boolean) --

          Whether AutoPredictor was used to create the predictor.

        • ReferencePredictorSummary (dict) --

          A summary of the reference predictor used if the predictor was retrained or upgraded.

          • Arn (string) --

            The ARN of the reference predictor.

          • State (string) --

            Whether the reference predictor is Active or Deleted .

        • Status (string) --

          The status of the predictor. States include:

          • ACTIVE

          • CREATE_PENDING , CREATE_IN_PROGRESS , CREATE_FAILED

          • DELETE_PENDING , DELETE_IN_PROGRESS , DELETE_FAILED

          • CREATE_STOPPING , CREATE_STOPPED

          Note

          The Status of the predictor must be ACTIVE before you can use the predictor to create a forecast.

        • Message (string) --

          If an error occurred, an informational message about the error.

        • CreationTime (datetime) --

          When the model training task was created.

        • LastModificationTime (datetime) --

          The last time the resource was modified. The timestamp depends on the status of the job:

          • CREATE_PENDING - The CreationTime .

          • CREATE_IN_PROGRESS - The current timestamp.

          • CREATE_STOPPING - The current timestamp.

          • CREATE_STOPPED - When the job stopped.

          • ACTIVE or CREATE_FAILED - When the job finished or failed.

    • NextToken (string) --

      If the response is truncated, Amazon Forecast returns this token. To retrieve the next set of results, use the token in the next request.