2024/03/29 - 10 updated api methods
Changes This release adds support for custom images for the CodeEditor App on SageMaker Studio
2024/03/25 - 12 updated api methods
Changes Introduced support for the following new instance types on SageMaker Studio for JupyterLab and CodeEditor applications: m6i, m6id, m7i, c6i, c6id, c7i, r6i, r6id, r7i, and p5
2024/03/15 - 8 updated api methods
Changes Adds m6i, m6id, m7i, c6i, c6id, c7i, r6i r6id, r7i, p5 instance type support to Sagemaker Notebook Instances and miscellaneous wording fixes for previous Sagemaker documentation.
2024/02/29 - 7 updated api methods
Changes Adds support for ModelDataSource in Model Packages to support unzipped models. Adds support to specify SourceUri for models which allows registration of models without mandating a container for hosting. Using SourceUri, customers can decouple the model from hosting information during registration.
2024/02/15 - 1 new api methods
Changes This release adds a new API UpdateClusterSoftware for SageMaker HyperPod. This API allows users to patch HyperPod clusters with latest platform softwares.
2024/02/02 - 6 updated api methods
Changes Amazon SageMaker Canvas adds GenerativeAiSettings support for CanvasAppSettings.
2024/01/26 - 1 new api methods
Changes Amazon SageMaker Automatic Model Tuning now provides an API to programmatically delete tuning jobs.
2024/01/14 - 7 updated api methods
Changes This release will have ValidationException thrown if certain invalid app types are provided. The release will also throw ValidationException if more than 10 account ids are provided in VpcOnlyTrustedAccounts.
2024/01/04 - 3 updated api methods
Changes Adding support for provisioned throughput mode for SageMaker Feature Groups
2023/12/28 - 3 updated api methods
Changes Amazon SageMaker Studio now supports Docker access from within app container
2023/12/21 - 4 updated api methods
Changes Amazon SageMaker Training now provides model training container access for debugging purposes. Amazon SageMaker Search now provides the ability to use visibility conditions to limit resource access to a single domain or multiple domains.
2023/12/15 - 1 new 49 updated api methods
Changes This release 1) introduces a new API: DeleteCompilationJob , and 2) adds InfraCheckConfig for Create/Describe training job API
2023/11/30 - 21 updated api methods
Changes This release adds support for 1/ Code Editor, based on Code-OSS, Visual Studio Code Open Source, a new fully managed IDE option in SageMaker Studio 2/ JupyterLab, a new fully managed JupyterLab IDE experience in SageMaker Studio
2023/11/29 - 13 new 20 updated api methods
Changes This release adds following support 1/ Improved SDK tooling for model deployment. 2/ New Inference Component based features to lower inference costs and latency 3/ SageMaker HyperPod management. 4/ Additional parameters for FM Fine Tuning in Autopilot
2023/11/22 - 3 updated api methods
Changes This feature adds the end user license agreement status as a model access configuration parameter.
2023/11/16 - 20 updated api methods
Changes Amazon SageMaker Studio now supports Trainium instance types - trn1.2xlarge, trn1.32xlarge, trn1n.32xlarge.
2023/11/01 - 1 updated api methods
Changes Support for batch transform input in Model dashboard
2023/10/26 - 4 updated api methods
Changes Amazon Sagemaker Autopilot now supports Text Generation jobs.
2023/10/12 - 6 updated api methods
Changes Amazon SageMaker Canvas adds KendraSettings and DirectDeploySettings support for CanvasAppSettings
2023/10/04 - 7 updated api methods
Changes Adding support for AdditionalS3DataSource, a data source used for training or inference that is in addition to the input dataset or model data.
2023/10/03 - 14 updated api methods
Changes This release allows users to run Selective Execution in SageMaker Pipelines without SourcePipelineExecutionArn if selected steps do not have any dependent steps.
2023/09/28 - 4 updated api methods
Changes Online store feature groups supports Standard and InMemory tier storage types for low latency storage for real-time data retrieval. The InMemory tier supports collection types List, Set, and Vector.
2023/09/19 - 12 updated api methods
Changes This release adds support for one-time model monitoring schedules that are executed immediately without delay, explicit data analysis windows for model monitoring schedules and exclude features attributes to remove features from model monitor analysis.
2023/09/15 - 3 updated api methods
Changes This release introduces Skip Model Validation for Model Packages
2023/09/08 - 2 updated api methods
Changes Autopilot APIs will now support holiday featurization for Timeseries models. The models will now hold holiday metadata and should be able to accommodate holiday effect during inference.
2023/09/05 - 1 updated api methods
Changes SageMaker Neo now supports data input shape derivation for Pytorch 2.0 and XGBoost compilation job for cloud instance targets. You can skip DataInputConfig field during compilation job creation. You can also access derived information from model in DescribeCompilationJob response.
2023/08/30 - 6 updated api methods
Changes Amazon SageMaker Canvas adds IdentityProviderOAuthSettings support for CanvasAppSettings
2023/08/15 - 2 updated api methods
Changes SageMaker Inference Recommender now provides SupportedResponseMIMETypes from DescribeInferenceRecommendationsJob response
2023/08/04 - 1 updated api methods
Changes Including DataCaptureConfig key in the Amazon Sagemaker Search's transform job object
2023/08/03 - 7 updated api methods
Changes Amazon SageMaker now supports running training jobs on p5.48xlarge instance types.
2023/08/02 - 1 new api methods
Changes SageMaker Inference Recommender introduces a new API GetScalingConfigurationRecommendation to recommend auto scaling policies based on completed Inference Recommender jobs.
2023/08/01 - 2 updated api methods
Changes Add Stairs TrafficPattern and FlatInvocations to RecommendationJobStoppingConditions
2023/07/27 - 1 updated api methods
Changes Expose ProfilerConfig attribute in SageMaker Search API response.
2023/07/20 - 1 new 1 updated api methods
Changes Cross account support for SageMaker Feature Store
2023/07/13 - 6 updated api methods
Changes Amazon SageMaker Canvas adds WorkspeceSettings support for CanvasAppSettings
2023/07/03 - 3 updated api methods
Changes SageMaker Inference Recommender now accepts new fields SupportedEndpointType and ServerlessConfiguration to support serverless endpoints.
2023/06/30 - 6 updated api methods
Changes This release adds support for rolling deployment in SageMaker Inference.
2023/06/29 - 6 updated api methods
Changes Adding support for timeseries forecasting in the CreateAutoMLJobV2 API.
2023/06/28 - 1 updated api methods
Changes This release adds support for Model Cards Model Registry integration.
2023/06/27 - 4 updated api methods
Changes Introducing TTL for online store records in feature groups.
2023/06/21 - 9 updated api methods
Changes This release provides support in SageMaker for output files in training jobs to be uploaded without compression and enable customer to deploy uncompressed model from S3 to real-time inference Endpoints. In addition, ml.trn1n.32xlarge is added to supported instance type list in training job.
2023/06/19 - 2 updated api methods
Changes Amazon Sagemaker Autopilot releases CreateAutoMLJobV2 and DescribeAutoMLJobV2 for Autopilot customers with ImageClassification, TextClassification and Tabular problem type config support.
2023/06/12 - 3 updated api methods
Changes Sagemaker Neo now supports compilation for inferentia2 (ML_INF2) and Trainium1 (ML_TRN1) as available targets. With these devices, you can run your workloads at highest performance with lowest cost. inferentia2 (ML_INF2) is available in CMH and Trainium1 (ML_TRN1) is available in IAD currently
2023/06/02 - 4 updated api methods
Changes This release adds Selective Execution feature that allows SageMaker Pipelines users to run selected steps in a pipeline.
2023/05/26 - 8 updated api methods
Changes Added ml.p4d and ml.inf1 as supported instance type families for SageMaker Notebook Instances.
2023/05/25 - 3 updated api methods
Changes Amazon SageMaker Automatic Model Tuning now supports enabling Autotune for tuning jobs which can choose tuning job configurations.
2023/05/24 - 2 updated api methods
Changes SageMaker now provides an instantaneous deployment recommendation through the DescribeModel API
2023/05/23 - 3 updated api methods
Changes Added ModelNameEquals, ModelPackageVersionArnEquals in request and ModelName, SamplePayloadUrl, ModelPackageVersionArn in response of ListInferenceRecommendationsJobs API. Added Invocation timestamps in response of DescribeInferenceRecommendationsJob API & ListInferenceRecommendationsJobSteps API.
2023/05/09 - 5 updated api methods
Changes This release includes support for (1) Provisioned Concurrency for Amazon SageMaker Serverless Inference and (2) UpdateEndpointWeightsAndCapacities API for Serverless endpoints.
2023/05/04 - 13 updated api methods
Changes We added support for ml.inf2 and ml.trn1 family of instances on Amazon SageMaker for deploying machine learning (ML) models for Real-time and Asynchronous inference. You can use these instances to achieve high performance at a low cost for generative artificial intelligence (AI) models.
2023/05/02 - 2 updated api methods
Changes Amazon Sagemaker Autopilot supports training models with sample weights and additional objective metrics.
2023/04/27 - 11 updated api methods
Changes Added ml.p4d.24xlarge and ml.p4de.24xlarge as supported instances for SageMaker Studio
2023/04/20 - 6 updated api methods
Changes Amazon SageMaker Canvas adds ModelRegisterSettings support for CanvasAppSettings.
2023/04/04 - 3 updated api methods
Changes Amazon SageMaker Asynchronous Inference now allows customer's to receive failure model responses in S3 and receive success/failure model responses in SNS notifications.
2023/03/23 - 2 new 15 updated api methods
Changes Amazon SageMaker Autopilot adds two new APIs - CreateAutoMLJobV2 and DescribeAutoMLJobV2. Amazon SageMaker Notebook Instances now supports the ml.geospatial.interactive instance type.
2023/03/09 - 2 updated api methods
Changes Amazon SageMaker Inference now allows SSM access to customer's model container by setting the "EnableSSMAccess" parameter for a ProductionVariant in CreateEndpointConfig API.
2023/03/08 - 16 updated api methods
Changes There needs to be a user identity to specify the SageMaker user who perform each action regarding the entity. However, these is a not a unified concept of user identity across SageMaker service that could be used today.
2023/03/02 - 1 updated api methods
Changes Add a new field "EndpointMetrics" in SageMaker Inference Recommender "ListInferenceRecommendationsJobSteps" API response.
2023/02/10 - 3 updated api methods
Changes Amazon SageMaker Autopilot adds support for selecting algorithms in CreateAutoMLJob API.
2023/01/31 - 4 updated api methods
Changes Amazon SageMaker Automatic Model Tuning now supports more completion criteria for Hyperparameter Optimization.
2023/01/27 - 3 updated api methods
Changes This release supports running SageMaker Training jobs with container images that are in a private Docker registry.
2023/01/25 - 3 updated api methods
Changes SageMaker Inference Recommender now decouples from Model Registry and could accept Model Name to invoke inference recommendations job; Inference Recommender now provides CPU/Memory Utilization metrics data in recommendation output.
2023/01/23 - 13 updated api methods
Changes Amazon SageMaker Inference now supports P4de instance types.
2023/01/19 - 3 updated api methods
Changes HyperParameterTuningJobs now allow passing environment variables into the corresponding TrainingJobs
2022/12/21 - 1 updated api methods
Changes This release enables adding RStudio Workbench support to an existing Amazon SageMaker Studio domain. It allows setting your RStudio on SageMaker environment configuration parameters and also updating the RStudioConnectUrl and RStudioPackageManagerUrl parameters for existing domains
2022/12/20 - 3 updated api methods
Changes Amazon SageMaker Autopilot adds support for new objective metrics in CreateAutoMLJob API.
2022/12/19 - 2 new 3 updated api methods
Changes AWS Sagemaker - Sagemaker Images now supports Aliases as secondary identifiers for ImageVersions. SageMaker Images now supports additional metadata for ImageVersions for better images management.
2022/12/16 - 3 updated api methods
Changes AWS sagemaker - Features: This release adds support for random seed, it's an integer value used to initialize a pseudo-random number generator. Setting a random seed will allow the hyperparameter tuning search strategies to produce more consistent configurations for the same tuning job.
2022/12/15 - 2 updated api methods
Changes SageMaker Inference Recommender now allows customers to load tests their models on various instance types using private VPC.
2022/11/30 - 34 new 26 updated api methods
Changes Added Models as part of the Search API. Added Model shadow deployments in realtime inference, and shadow testing in managed inference. Added support for shared spaces, geospatial APIs, Model Cards, AutoMLJobStep in pipelines, Git repositories on user profiles and domains, Model sharing in Jumpstart.
2022/11/18 - 2 updated api methods
Changes Added DisableProfiler flag as a new field in ProfilerConfig
2022/11/03 - 7 updated api methods
Changes Amazon SageMaker now supports running training jobs on ml.trn1 instance types.
2022/10/27 - 3 updated api methods
Changes This change allows customers to provide a custom entrypoint script for the docker container to be run while executing training jobs, and provide custom arguments to the entrypoint script.
2022/10/26 - 4 updated api methods
Changes Amazon SageMaker Automatic Model Tuning now supports specifying Grid Search strategy for tuning jobs, which evaluates all hyperparameter combinations exhaustively based on the categorical hyperparameters provided.
2022/10/24 - 1 new 2 updated api methods
Changes SageMaker Inference Recommender now supports a new API ListInferenceRecommendationJobSteps to return the details of all the benchmark we create for an inference recommendation job.
2022/10/21 - 2 updated api methods
Changes CreateInferenceRecommenderjob API now supports passing endpoint details directly, that will help customers to identify the max invocation and max latency they can achieve for their model and the associated endpoint along with getting recommendations on other instances.
2022/10/18 - 14 updated api methods
Changes This change allows customers to enable data capturing while running a batch transform job, and configure monitoring schedule to monitoring the captured data.
2022/10/17 - 12 updated api methods
Changes This release adds support for C7g, C6g, C6gd, C6gn, M6g, M6gd, R6g, and R6gn Graviton instance types in Amazon SageMaker Inference.
2022/09/30 - 3 updated api methods
Changes A new parameter called ExplainerConfig is added to CreateEndpointConfig API to enable SageMaker Clarify online explainability feature.
2022/09/29 - 9 updated api methods
Changes SageMaker Training Managed Warm Pools let you retain provisioned infrastructure to reduce latency for repetitive training workloads.
2022/09/21 - 6 updated api methods
Changes SageMaker now allows customization on Canvas Application settings, including enabling/disabling time-series forecasting and specifying an Amazon Forecast execution role at both the Domain and UserProfile levels.
2022/09/15 - 4 updated api methods
Changes Amazon SageMaker Automatic Model Tuning now supports specifying Hyperband strategy for tuning jobs, which uses a multi-fidelity based tuning strategy to stop underperforming hyperparameter configurations early.
2022/09/08 - 2 updated api methods
Changes This release adds Mode to AutoMLJobConfig.
2022/09/07 - 2 updated api methods
Changes SageMaker Hosting now allows customization on ML instance storage volume size, model data download timeout and inference container startup ping health check timeout for each ProductionVariant in CreateEndpointConfig API.
2022/09/06 - 2 updated api methods
Changes This release adds HyperParameterTuningJob type in Search API.
2022/09/02 - 3 updated api methods
Changes This release enables administrators to attribute user activity and API calls from Studio notebooks, Data Wrangler and Canvas to specific users even when users share the same execution IAM role. ExecutionRoleIdentityConfig at Sagemaker domain level enables this feature.
2022/08/31 - 2 updated api methods
Changes SageMaker Inference Recommender now accepts Inference Recommender fields: Domain, Task, Framework, SamplePayloadUrl, SupportedContentTypes, SupportedInstanceTypes, directly in our CreateInferenceRecommendationsJob API through ContainerConfig
2022/08/09 - 2 updated api methods
Changes Amazon SageMaker Automatic Model Tuning now supports specifying multiple alternate EC2 instance types to make tuning jobs more robust when the preferred instance type is not available due to insufficient capacity.
2022/07/18 - 9 new api methods
Changes Amazon SageMaker Edge Manager provides lightweight model deployment feature to deploy machine learning models on requested devices.
2022/07/14 - 12 updated api methods
Changes This release adds support for G5, P4d, and C6i instance types in Amazon SageMaker Inference and increases the number of hyperparameters that can be searched from 20 to 30 in Amazon SageMaker Automatic Model Tuning
2022/07/07 - 7 updated api methods
Changes Heterogeneous clusters: the ability to launch training jobs with multiple instance types. This enables running component of the training job on the instance type that is most suitable for it. e.g. doing data processing and augmentation on CPU instances and neural network training on GPU instances
2022/06/29 - 3 new 3 updated api methods
Changes This release adds: UpdateFeatureGroup, UpdateFeatureMetadata, DescribeFeatureMetadata APIs; FeatureMetadata type in Search API; LastModifiedTime, LastUpdateStatus, OnlineStoreTotalSizeBytes in DescribeFeatureGroup API.
2022/06/23 - 6 updated api methods
Changes SageMaker Ground Truth now supports Virtual Private Cloud. Customers can launch labeling jobs and access to their private workforce in VPC mode.
2022/05/27 - 11 updated api methods
Changes Amazon SageMaker Notebook Instances now allows configuration of Instance Metadata Service version and Amazon SageMaker Studio now supports G5 instance types.
2022/05/25 - 2 updated api methods
Changes Amazon SageMaker Autopilot adds support for manually selecting features from the input dataset using the CreateAutoMLJob API.
2022/05/03 - 8 updated api methods
Changes SageMaker Autopilot adds new metrics for all candidate models generated by Autopilot experiments; RStudio on SageMaker now allows users to bring your own development environment in a custom image.
2022/04/27 - 2 updated api methods
Changes Amazon SageMaker Autopilot adds support for custom validation dataset and validation ratio through the CreateAutoMLJob and DescribeAutoMLJob APIs.
2022/04/26 - 2 updated api methods
Changes SageMaker Inference Recommender now accepts customer KMS key ID for encryption of endpoints and compilation outputs created during inference recommendation.
2022/04/07 - 4 updated api methods
Changes Amazon Sagemaker Notebook Instances now supports G5 instance types
2022/02/08 - 3 updated api methods
Changes Autopilot now generates an additional report with information on the performance of the best model, such as a Confusion matrix and Area under the receiver operating characteristic (AUC-ROC). The path to the report can be found in CandidateArtifactLocations.
2022/01/28 - 3 updated api methods
Changes This release added a new NNA accelerator compilation support for Sagemaker Neo.
2022/01/26 - 2 updated api methods
Changes API changes relating to Fail steps in model building pipeline and add PipelineExecutionFailureReason in PipelineExecutionSummary.
2022/01/05 - 7 updated api methods
Changes Amazon SageMaker now supports running training jobs on ml.g5 instance types.
2022/01/03 - 9 updated api methods
Changes The release allows users to pass pipeline definitions as Amazon S3 locations and control the pipeline execution concurrency using ParallelismConfiguration. It also adds support of EMR jobs as pipeline steps.
2021/12/20 - 2 updated api methods
Changes This release adds a new ContentType field in AutoMLChannel for SageMaker CreateAutoMLJob InputDataConfig.
2021/12/08 - 4 updated api methods
Changes This release added a new Ambarella device(amba_cv2) compilation support for Sagemaker Neo.
2021/12/01 - 9 new 19 updated api methods
Changes This release enables - 1/ Inference endpoint configuration recommendations and ability to run custom load tests to meet performance needs. 2/ Deploy serverless inference endpoints. 3/ Query, filter and retrieve end-to-end ML lineage graph, and incorporate model quality/bias detection in ML workflow.
2021/11/08 - 4 updated api methods
Changes SageMaker CreateEndpoint and UpdateEndpoint APIs now support additional deployment configuration to manage traffic shifting options and automatic rollback monitoring. DescribeEndpoint now shows new in-progress deployment details with stage status.
2021/11/04 - 2 updated api methods
Changes ListDevices and DescribeDevice now show Edge Manager agent version.
2021/10/28 - 10 updated api methods
Changes This release adds support for RStudio on SageMaker.
2021/10/27 - 2 new 6 updated api methods
Changes This release allows customers to describe one or more versioned model packages through BatchDescribeModelPackage, update project via UpdateProject, modify and read customer metadata properties using Create, Update and Describe ModelPackage and enables cross account registration of model packages.
2021/10/06 - 7 updated api methods
Changes This release adds a new TrainingInputMode FastFile for SageMaker Training APIs.
2021/09/16 - 1 new api methods
Changes Add API for users to retry a failed pipeline execution or resume a stopped one.
2021/09/14 - 2 updated api methods
Changes This release adds support for "Project Search"
2021/09/10 - 4 new 11 updated api methods
Changes This release adds support for "Lifecycle Configurations" to SageMaker Studio
2021/08/18 - 7 updated api methods
Changes Amazon SageMaker now supports Asynchronous Inference endpoints. Adds PlatformIdentifier field that allows Notebook Instance creation with different platform selections. Increases the maximum number of containers in multi-container endpoints to 15. Adds more instance types to InstanceType field.
2021/08/12 - 2 updated api methods
Changes Amazon SageMaker Autopilot adds new metrics for all candidate models generated by Autopilot experiments.
2021/07/30 - 9 updated api methods
Changes API changes with respect to Lambda steps in model building pipelines. Adds several waiters to async Sagemaker Image APIs. Add more instance types to AppInstanceType field
2021/07/09 - 1 updated api methods
Changes Releasing new APIs related to Tuning steps in model building pipelines.
2021/07/01 - 5 updated api methods
Changes SageMaker model registry now supports up to 5 containers and associated environment variables.
2021/06/28 - 3 updated api methods
Changes Sagemaker Neo now supports running compilation jobs using customer's Amazon VPC
2021/06/17 - 23 updated api methods
Changes Enable ml.g4dn instance types for SageMaker Batch Transform and SageMaker Processing
2021/06/10 - 6 updated api methods
Changes Using SageMaker Edge Manager with AWS IoT Greengrass v2 simplifies accessing, maintaining, and deploying models to your devices. You can now create deployable IoT Greengrass components during edge packaging jobs. You can choose to create a device fleet with or without creating an AWS IoT role alias.
2021/06/07 - 2 new 3 updated api methods
Changes AWS SageMaker - Releasing new APIs related to Callback steps in model building pipelines. Adds experiment integration to model building pipelines.
2021/05/05 - 3 updated api methods
Changes Amazon SageMaker Autopilot now provides the ability to automatically deploy the best model to an endpoint
2021/05/04 - 5 updated api methods
Changes Enable retrying Training and Tuning Jobs that fail with InternalServerError by setting RetryStrategy.
2021/03/30 - 3 updated api methods
Changes Amazon SageMaker Autopilot now supports 1) feature importance reports for AutoML jobs and 2) PartialFailures for AutoML jobs
2021/03/25 - 5 updated api methods
Changes This feature allows customer to specify the environment variables in their CreateTrainingJob requests.
2021/03/19 - 2 updated api methods
Changes Adding authentication support for pulling images stored in private Docker registries to build containers for real-time inference.
2021/03/17 - 3 updated api methods
Changes Support new target device ml_eia2 in SageMaker CreateCompilationJob API
2021/03/04 - 3 updated api methods
Changes This release adds the ResolvedOutputS3Uri to the DescribeFeatureGroup API to indicate the S3 prefix where offline data is stored in a feature group
2021/02/22 - 4 updated api methods
Changes Amazon SageMaker now supports core dump for SageMaker Endpoints and direct invocation of a single container in a SageMaker Endpoint that hosts multiple containers.
2021/02/18 - 1 updated api methods
Changes This release adds expires-in-seconds parameter to the CreatePresignedDomainUrl API for support of a configurable TTL.
2021/02/09 - 2 updated api methods
Changes Add a new optional FrameworkVersion field to Sagemaker Neo CreateCompilationJob API
2021/01/14 - 2 updated api methods
Changes This feature allows customers to enable/disable model caching on Multi-Model endpoints.
2020/12/08 - 32 new 8 updated api methods
Changes This feature helps you monitor model performance characteristics such as accuracy, identify undesired bias in your ML models, and explain model decisions better with explainability drift detection.
2020/12/01 - 50 new 19 updated api methods
Changes Amazon SageMaker Pipelines for ML workflows. Amazon SageMaker Feature Store, a fully managed repository for ML features.
2020/11/16 - 2 updated api methods
Changes This feature enables customers to encrypt their Amazon SageMaker Studio storage volumes with customer master keys (CMKs) managed by them in AWS Key Management Service (KMS).
2020/10/26 - 14 new 19 updated api methods
Changes This release enables customers to bring custom images for use with SageMaker Studio notebooks.
2020/10/08 - 3 updated api methods
Changes This release enables Sagemaker customers to convert Tensorflow and PyTorch models to CoreML (ML Model) format.
2020/10/05 - 2 updated api methods
Changes This release adds support for launching Amazon SageMaker Studio in your VPC. Use AppNetworkAccessType in CreateDomain API to disable access to public internet and restrict the network traffic to VPC.
2020/09/15 - 3 updated api methods
Changes Sagemaker Ground Truth: Added support for a new Streaming feature which helps to continuously feed data and receive labels in real time. This release adds a new input and output SNS data channel.
2020/08/14 - 5 updated api methods
Changes Amazon SageMaker now supports 1) creating real-time inference endpoints using model container images from Docker registries in customers' VPC 2) AUC(Area under the curve) as AutoPilot objective metric
2020/07/24 - 3 new 12 updated api methods
Changes Sagemaker Ground Truth:Added support for OIDC (OpenID Connect) to authenticate workers via their own identity provider instead of through Amazon Cognito. This release adds new APIs (CreateWorkforce, DeleteWorkforce, and ListWorkforces) to SageMaker Ground Truth service. Sagemaker Neo: Added support for detailed target device description by using TargetPlatform fields - OS, architecture, and accelerator. Added support for additional compilation parameters by using JSON field CompilerOptions. Sagemaker Search: SageMaker Search supports transform job details in trial components.
2020/07/09 - 1 new 1 updated api methods
Changes This release adds the DeleteHumanTaskUi API to Amazon Augmented AI
2020/06/26 - 2 updated api methods
Changes The new 'ModelClientConfig' parameter being added for CreateTransformJob and DescribeTransformJob api actions enable customers to configure model invocation related parameters such as timeout and retry.
2020/06/01 - 3 updated api methods
Changes We are releasing HumanTaskUiArn as a new parameter in CreateLabelingJob and RenderUiTemplate which can take an ARN for a system managed UI to render a task.
2020/05/08 - 6 updated api methods
Changes This release adds a new parameter (EnableInterContainerTrafficEncryption) to CreateProcessingJob API to allow for enabling inter-container traffic encryption on processing jobs.
2020/04/27 - 8 updated api methods
Changes Change to the input, ResourceSpec, changing EnvironmentArn to SageMakerImageArn. This affects the following preview APIs: CreateDomain, DescribeDomain, UpdateDomain, CreateUserProfile, DescribeUserProfile, UpdateUserProfile, CreateApp and DescribeApp.
2020/04/16 - 13 updated api methods
Changes Amazon SageMaker now supports running training jobs on ml.g4dn and ml.c5n instance types. Amazon SageMaker supports in "IN" operation for Search now.
2020/03/26 - 6 updated api methods
Changes This release updates Amazon Augmented AI CreateFlowDefinition API and DescribeFlowDefinition response.
2020/02/26 - 5 updated api methods
Changes SageMaker UpdateEndpoint API now supports retained variant properties, e.g., instance count, variant weight. SageMaker ListTrials API filter by TrialComponentName. Make ExperimentConfig name length limits consistent with CreateExperiment, CreateTrial, and CreateTrialComponent APIs.
2020/01/16 - 2 new 7 updated api methods
Changes This release adds two new APIs (UpdateWorkforce and DescribeWorkforce) to SageMaker Ground Truth service for workforce IP whitelisting.
2020/01/10 - 3 updated api methods
Changes SageMaker ListTrialComponents API filter by TrialName and ExperimentName.
2019/12/04 - 56 new 19 updated api methods
Changes You can now use SageMaker Autopilot for automatically training and tuning candidate models using a combination of various feature engineering, ML algorithms, and hyperparameters determined from the user's input data. SageMaker Automatic Model Tuning now supports tuning across multiple algorithms. With Amazon SageMaker Experiments users can create Experiments, ExperimentTrials, and ExperimentTrialComponents to track, organize, and evaluate their ML training jobs. With Amazon SageMaker Debugger, users can easily debug training jobs using a number of pre-built rules provided by Amazon SageMaker, or build custom rules. With Amazon SageMaker Processing, users can run on-demand, distributed, and fully managed jobs for data pre- or post- processing or model evaluation. With Amazon SageMaker Model Monitor, a user can create MonitoringSchedules to automatically monitor endpoints to detect data drift and other issues and get alerted on them. This release also includes the preview version of Amazon SageMaker Studio with Domains, UserProfiles, and Apps. This release also includes the preview version of Amazon Augmented AI to easily implement human review of machine learning predictions by creating FlowDefinitions, HumanTaskUis, and HumanLoops.
2019/11/18 - 2 updated api methods
Changes Amazon SageMaker now supports multi-model endpoints to host multiple models on an endpoint using a single inference container.
2019/10/24 - 9 updated api methods
Changes Adds support for the new family of Elastic Inference Accelerators (eia2) for SageMaker Hosting and Notebook Services
2019/09/25 - 6 updated api methods
Changes Enable G4D and R5 instances in SageMaker Hosting Services
2019/08/21 - 7 updated api methods
Changes Amazon SageMaker now supports Amazon EFS and Amazon FSx for Lustre file systems as data sources for training machine learning models. Amazon SageMaker now supports running training jobs on ml.p3dn.24xlarge instance type. This instance type is offered as a limited private preview for certain SageMaker customers. If you are interested in joining the private preview, please reach out to the SageMaker Product Management team via AWS Support."
2019/08/20 - 10 updated api methods
Changes Amazon SageMaker introduces Managed Spot Training. Increases the maximum number of metric definitions to 40 for SageMaker Training and Hyperparameter Tuning Jobs. SageMaker Neo adds support for Acer aiSage and Qualcomm QCS605 and QCS603.
2019/06/11 - 5 updated api methods
Changes The default TaskTimeLimitInSeconds of labeling job is increased to 8 hours. Batch Transform introduces a new DataProcessing field which supports input and output filtering and data joining. Training job increases the max allowed input channels from 8 to 20.
2019/05/08 - 8 updated api methods
Changes Workteams now supports notification configurations. Neo now supports Jetson Nano as a target device and NumberOfHumanWorkersPerDataObject is now included in the ListLabelingJobsForWorkteam response.
2019/03/14 - 3 updated api methods
Changes Amazon SageMaker Automatic Model Tuning now supports random search and hyperparameter scaling.
2019/03/08 - 7 updated api methods
Changes SageMaker notebook instances now support enabling or disabling root access for notebook users. SageMaker Neo now supports rk3399 and rk3288 as compilation target devices.
2019/01/10 - 4 updated api methods
Changes SageMaker Training Jobs now support Inter-Container traffic encryption.
2018/12/19 - 7 updated api methods
Changes Batch Transform Jobs now supports TFRecord as a Split Type. ListCompilationJobs API action now supports SortOrder and SortBy inputs.
2018/12/12 - 2 updated api methods
Changes Amazon SageMaker Automatic Model Tuning now supports early stopping of training jobs. With early stopping, training jobs that are unlikely to generate good models will be automatically stopped during a Hyperparameter Tuning Job.
2018/11/29 - 32 new 14 updated api methods
Changes Amazon SageMaker now has Algorithm and Model Package entities that can be used to create Training Jobs, Hyperparameter Tuning Jobs and hosted Models. Subscribed Marketplace products can be used on SageMaker to create Training Jobs, Hyperparameter Tuning Jobs and Models. Notebook Instances and Endpoints can leverage Elastic Inference accelerator types for on-demand GPU computing. Model optimizations can be performed with Compilation Jobs. Labeling Jobs can be created and supported by a Workforce. Models can now contain up to 5 containers allowing for inference pipelines within Endpoints. Code Repositories (such as Git) can be linked with SageMaker and loaded into Notebook Instances. Network isolation is now possible on Models, Training Jobs, and Hyperparameter Tuning Jobs, which restricts inbound/outbound network calls for the container. However, containers can talk to their peers in distributed training mode within the same security group. A Public Beta Search API was added that currently supports Training Jobs.
2018/11/14 - 9 updated api methods
Changes SageMaker now makes the final set of metrics published from training jobs available in the DescribeTrainingJob results. Automatic Model Tuning now supports warm start of hyperparameter tuning jobs. Notebook instances now support a larger number of instance types to include instances from the ml.t3, ml.m5, ml.c4, ml.c5 families.
2018/10/26 - 7 updated api methods
Changes SageMaker notebook instances can now have a volume size configured.
2018/08/30 - 4 updated api methods
Changes VolumeKmsKeyId now available in Batch Transform Job
2018/08/17 - 1 updated api methods
Changes Added an optional boolean parameter, 'DisassociateLifecycleConfig', to the UpdateNotebookInstance operation. When set to true, the lifecycle configuration associated with the notebook instance will be removed, allowing a new one to be set via a new 'LifecycleConfigName' parameter.